K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

b và c

học tốt nha

23 tháng 3 2021

1 + 1 = 2 hoặc 1 +1

16 tháng 11 2015

ủng hộ mình nha 

i love you

5 tháng 8 2023

ok

10 tháng 1 2018

D nha bạn ^_^

11 tháng 1 2018

1 với 1=?

A.3

B.4

C.23

D 11

D nha

26 tháng 12 2017

12128

26 tháng 12 2017

đừng có ghi câu hỏi bậy bạ đó nữa !

7 tháng 2 2021

10 điểm

9 tháng 2 2021

0,1 điểm

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

22 tháng 2 2017

a, 1 + 1 + 6 = 68

b, 8 + 11 =  40

22 tháng 2 2017

8+11=52

k cho mk nếu bn thấy đúng

19 tháng 11 2021

Chọn B .-.

b. 2

@Nghệ Mạt

#cua

29 tháng 9 2018

nhiều thế

lớp 1 học cái này à:(((??

30 tháng 4 2018

1+1+1+1+1+1+1+1+1+1+1+1+11++1+1+1+11+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1-2+2+2+2+2+2+2-12221+21=

-12135

1 tháng 5 2018

bang 42

14 tháng 4 2016

Vì a,b,c,d có vai trò như nhau

Giả sử \(a\ge b\ge c\ge d\)

=>\(a^2\ge b^2\ge c^2\ge d^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}\)

=>\(1\le4.\frac{1}{d^2}\)

=>\(\frac{1}{4}\le\frac{1}{d^2}\)

=>\(4\ge d^2\)

=>\(2\ge d\)

Vì d là số tự nhiên khác 0

=>d=1,2

-Xét d=1

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{1^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=0\)

\(\frac{1}{a^2}>0,\frac{1}{b^2}>0,\frac{1}{c^2}>0=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>0\)

=>Vô lí

-Xét d=2

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{2^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{4}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

Vì \(a\ge b\ge c\)

=>\(a^2\ge b^2\ge c^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}\)

=>\(\frac{3}{4}\le3.\frac{1}{c^2}\)

=>\(\frac{1}{4}\le\frac{1}{c^2}\)

=>\(4\ge c^2\)

=>\(2\ge c\)

Vì \(c\ge d=>c\ge2\)

=>c=2

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{2^2}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{4}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)

Vì \(a\ge b\)

=>\(a^2\ge b^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{b^2}+\frac{1}{b^2}\)

=>\(\frac{2}{4}\le\frac{2}{b^2}\)

=>\(\frac{1}{4}\le\frac{1}{b^2}\)

=>\(4\ge b^2\)

=>\(2\ge b\)

Vì \(b\ge c=>b\ge2\)

=>b=2

=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{2^2}=\frac{2}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{4}=\frac{2}{4}\)

=>\(\frac{1}{a^2}=\frac{1}{4}\)

=>\(a^2=4=>a=2\)

Vậy a=2,b=2,c=2,d=2