Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3m-1 . 5n-1 = 45m-n
các bạn giúp mình sớp nhé chiều mình nạp tk trước. ai giải chi tiết mình tick cho
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 1 - 2x < 7
=> -2x < 6
=> x < -3
=> x thuộc {-4; -5; -6; ...}
b, \(\left(x-1\right)\left(x-2\right)>0\)
th1 :
\(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow}x< 1\Rightarrow x\in\left\{0;-1;-2;...\right\}}\)
th2 :
\(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow}x>2\Rightarrow x\in\left\{3;4;5;...\right\}}\)
vậy_
c tương tự b
\(a.1-2x< 7\Leftrightarrow2x< 7+1=8\Leftrightarrow x< 8:2\Leftrightarrow x< 4\)
Vậy x < 4
\(b.\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)
\(TH1\Leftrightarrow\orbr{\begin{cases}x-1>0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0+1=1\\x>0+2=2\end{cases}\Rightarrow x>2}}\)
\(TH2\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0+1=1\\x< 0+2=2\end{cases}\Rightarrow}}x< 2\)
Vậy \(x\ne2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(-\frac{1}{3}\right)^{3+n}:\left(-\frac{1}{3}\right)^n=\left(-\frac{1}{3}\right)^{3+n-n}=\left(-\frac{1}{3}\right)^3=-\frac{1}{27}\)
2. n = {2;3;4}
3.2x + 2x + 3 = 288
=> 2x . 2 = 288 - 3 = 285
=> 2x = 285 : 2 = 285/2.
Mà 2x không thể bằng phân số nên x không tồn tại nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(1-2x< 7\)
mà: \(1-n\le1\)với mọi n
\(\Rightarrow2x=n\Rightarrow x=\frac{n}{2}\)với mọi n
b.để: (x-1).(x-2)>0
=> x-1>0hoặc x-2<0
=>x>1hoặc x<2
(mik chỉ làm 2 câu mẫu thôi, bạn cố gắng tự làm nha, rất vui được kết bạn với bạn)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow A=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+\frac{1}{\frac{\left(4+1\right).4}{2}}+...+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{2}{\left(2+1\right).2}+\frac{2}{\left(3+1\right).3}+\frac{2}{\left(4+1\right).4}+...+\frac{2}{\left(99+1\right).99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
Vậy A=1.
Cái này có trong violympic vòng 10..bạn nhớ ôn cho kĩ nếu như bạn thi violympic!
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải
Tìm x:
a)\(\left(x-2\right)^2=1\Leftrightarrow\left(x-2\right)^2=1^2.\)
\(\Rightarrow\orbr{\begin{cases}x-2=1\Rightarrow x=1+2=3\\x-2=-1\Rightarrow x=-1+2=1\end{cases}}\)
=> Vậy \(x=\orbr{\begin{cases}3\\1\end{cases}}\)
b) \(\left(2x-1\right)^3=-8\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow\left(2x-1\right)=-2\Rightarrow2x=-2+1=-1\)
\(\Rightarrow x=-1:2=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
c) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\orbr{\begin{cases}\left(-\frac{1}{4}\right)^2\\\left(\frac{1}{4}\right)^2\end{cases}}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)=\orbr{\begin{cases}-\frac{1}{4}\\\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=-\frac{1}{4}\Rightarrow x=-\frac{1}{4}-\frac{1}{2}=-\frac{3}{4}\\x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4}\end{cases}}\)
Vậy \(x=-\frac{3}{4};-\frac{1}{4}\)
BT2:
Giải
a) \(9.3^3.\frac{1}{81}.3^2=3^2.3^3.\left(\frac{1}{3}\right)^4.3^2=\left(3^2.3^3.3^2\right).\left(\frac{1}{3}\right)^4\)
\(=3^{2+3+2}.\left(\frac{1}{3}\right)^4=3^7.\left(\frac{1}{3}\right)^4=\frac{3^7.1^4}{1.3^4}=3^3\)
b) \(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.\left(\frac{1}{2}\right)^4\right)=2^{2+5}:\left(\frac{2^3.1^4}{2^4}\right)\)
\(=2^7:\left(\frac{1}{2}\right)=2^7.\frac{2}{1}=2^8\)
c) Chị đang nghĩ...