K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

\(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\left(-\frac{1}{2}xy\right)=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

5 tháng 9 2020

\(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\left(-\frac{1}{2}xy\right)\)

\(=-10x^3\left(-\frac{1}{2}xy\right)+\frac{2}{5}y\cdot\left(-\frac{1}{2}xy\right)-\frac{1}{3}z\left(-\frac{1}{2}xy\right)\)

\(=\left[\left(-10\right)\cdot\left(-\frac{1}{2}\right)\right]x^4y+\left[\frac{2}{5}\cdot\left(-\frac{1}{2}\right)\right]xy^2-\left[\frac{1}{3}\cdot\left(-\frac{1}{2}\right)\right]xyz\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

Ta có: \(\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\cdot\left(-\dfrac{1}{2}xy\right)\)

\(=10x^3\cdot\dfrac{1}{2}xy-\dfrac{2}{5}y\cdot\dfrac{1}{2}xy+\dfrac{1}{3}\cdot\dfrac{1}{2}xyz\)

\(=5x^4y-\dfrac{1}{5}xy^2+\dfrac{1}{6}xyz\)

8 tháng 9 2021

\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)

27 tháng 7 2019

\(x^2-2xy+5y^2-4y+1=0\)

=> \(\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)

=> \(\left(x-y\right)^2+\left(2y-1\right)^2=0\)

Ta có: \(\left(x-y\right)^2\ge0\forall x;y\)

      \(\left(2y-1\right)^2\ge0\forall y\)

=> \(\left(x-y\right)^2+\left(2y-1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\2y=1\end{cases}}\) <=> \(x=y=\frac{1}{2}\)

Vậy x = y = 1/2 (tm)

\(x^2-2xy+5y^2-4y+1=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2y-1\right)^2=0\)

Mà (x-y)2và (2y-1)2 > 0

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)

\(=\dfrac{5x^5y^4z}{\dfrac{1}{4}xy^2z}+\dfrac{\dfrac{1}{2}x^4y^2z^3}{\dfrac{1}{4}xy^2z}-\dfrac{2xy^3z^2}{\dfrac{1}{4}xy^2z}\)

=20x^4y^2+2x^3z^2-8yz

A = 5 + 2xy + 14y - x^2 - 5y^2 - 2x
   = -(x^2 + y^2 + 1 - 2xy + 2x - 2y) - (4y^2 - 12y + 9) + 5 + 1 + 9
   = -(x-y+1)^2 - (2y-3)^2 + 15 ≤ 15
Dấu "=" xảy ra <=> x-y+1 = 0
                             2y-3 = 0
                      <=> x = y-1
                             y = 3/2
                      <=> x = 3/2 - 1 = 1/2

4 tháng 10 2021

hnay toàn gặp thần đồng toán học ko zậy =))

1 tháng 11 2021

1.a) 2x4-4x3+2x2

=2x2(x2-2x+1)

=2x2(x-1)2

b) 2x2-2xy+5x-5y

=2x(x-y)+5(x-y)

=(2x+5)(x-y)

2.

a) 4x(x-3)-x+3=0

=>4x(x-3)-(x-3)=0

=>(4x-1)(x-3)=0

=> 2 TH:

*4x-1=0            *x-3=0

=>4x=0+1        =>x=0+3

=>4x=1           =>x=3

=>x=1/4

vậy x=1/4 hoặc x=3

b) (2x-3)^2-(x+1)^2=0

=> (2x-3-x-1).(2x-3+x+1)=0

=>(x-4).(3x-2)=0

=> 2 TH

*x-4=0

=> x=0+4

=> x=4

*3x-2=0

=>3x=0-2

=>3x=-2

=>x=-2/3 

vậy x=4 hoặc x=-2/3

1 tháng 11 2021

sửa 1 chút phần cuối:

3x-2=0

=>3x=0+2

=>3x=2

=>x=2/3

vậy x=2/3 hoặc....

25 tháng 7 2018

đề bài là phân tích đa thứ thành nhân tử nhé

25 tháng 7 2018

\(5x+5y-x^2-2xy-y^2\)

\(=\left(5x+5y\right)-\left(x^2+2xy+y^2\right)\)

\(=5\left(x+y\right)-\left(x+y\right)^2\)

\(=\left(5-x-y\right)\left(x+y\right)\)

17 tháng 6 2018

Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.

Bài 2: 

a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)

\(=4x^2+20x+25\)

b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)

\(=9x^2+24x+16\)

c/\(\left(3x+5y+\frac{1}{2}\right)^2\)

Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)

\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)

Bài 3:

a/ A= x2+10x+30

A= x2+2.5x+25+5

A= x2+2.5.x+52+5

A=(x+5)2+5

Ta có (x+5)2 luôn luôn > hoặc = 0

=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)

=> A luôn dương.

b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)

\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)

(Tương tự như câu A)

Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0

=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)

=> B luôn dương.

c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)

(Chứng minh tương tự câu a, b)

Chúc bạn học tốt!!

17 tháng 6 2018

mk giúp bạn bài  3 còn bài 1, 2 tự làm nha

a , A = x2  + 10x +30 

= (x2 + 2 . 5 . x +52 ) +5

= (x+5)2 + 5

Vì (x+5)2  >= 0 (luôn đúng)

=> (x+5)2 + 5  luôn luôn dương