Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{1}{5}-x=1\frac{3}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{8}{5}+\frac{7}{10}\)
\(\frac{16}{5}-x=\frac{23}{10}\)
\(x=\frac{23}{10}-\frac{16}{5}\)
\(x=-\frac{9}{10}\)
\(a-b⋮7\Rightarrow a⋮6,b⋮7\)
\(\Rightarrow4a⋮7;3b⋮7\)
\(\Rightarrow4a+3b⋮7\) (đpcm)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{48}{98}\)
\(A=\frac{8}{49}\)
A = \(\frac{1}{3}\).{ \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)}
A = \(\frac{1}{3}\).{\(\frac{1}{2}-\frac{1}{98}\)}
A = \(\frac{1}{3}.\left\{\frac{49}{98}-\frac{1}{98}\right\}\)
A=\(\frac{1}{3}.\frac{24}{49}\)
A = \(\frac{49}{98}\)
\(n^2+1⋮n-1\)
Ta có : \(n^2+1=n^2-n+n-1+2=n\left(n-1\right)+n-1+2=\left(n+1\right)\left(n-1\right)+2\)
\(\Rightarrow n^2+1⋮n-1\Leftrightarrow\left(n+1\right)\left(n-1\right)+2⋮n-1\)
\(\Leftrightarrow2⋮n-1\Leftrightarrow n-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow n\in\left\{2;0;3;-1\right\}\)
ta có \(10^n-1=9999...99\)(\(n-1\)chữ sô \(9\))
\(\Rightarrow10^n-1⋮9\)