Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2222^{5555}+5555^{2222}\)
\(=3^{5555}+4^{2222}\)
\(=243^{1111}+16^{1111}\)
\(=5^{1111}+2^{1111}\)
\(=\left(-2\right)^{1111}+2^{1111}\)
\(=0\left(mod7\right)\) (chia hết cho 7)
Ta có: 2222 đồng dư với 3(mod 7)
=> 22222 đồng dư với 32(mod 7)
=> 22222 đồng dư với 9(mod 7)
=> 22222 đồng dư với 2(mod 7)
=> (22222)3 đồng dư với 23(mod 7)
=> 22226 đồng dư với 8(mod 7)
=> 22226 đồng dư với 1(mod 7)
=> (22226)925 đồng dư với 1925(mod 7)
=> 22225550 đồng dư với 1925(mod 7)
Vì 22222 đồng dư với 2(mod 7)
=>(22222)2 đồng dư với 22(mod 7)
=>22224 đồng dư với 4(mod 7)
=>22224.2222 đồng dư với 4.3(mod 7)
=>22225 đồng dư với 12(mod 7)
=>22225 đồng dư với 5(mod 7)
=>22225.22225550 đồng dư với 5.1(mod 7)
=>22225555 đồng dư với 5(mod 7)
Lại có:
5555 đồng dư với 4(mod 7)
=>55553 đồng dư với 43(mod 7)
=>55553 đồng dư với 64(mod 7)
=>55553 đồng dư với 1(mod 7)
=>(55553)740 đồng dư với 1740(mod 7)
=>55552220 đồng dư với 1(mod 7)
Vì 5555 đồng dư với 4(mod 7)
=>55552 đồng dư với 42(mod 7)
=>55552 đồng dư với 16(mod 7)
=>55552 đồng dư với 3(mod 7)
=>55552.55552220 đồng dư với 3.1(mod 7)
=>55552222 đồng dư với 3(mod 7)
=>22225555+55552222 đồng dư với 4+3(mod 7)
=>22225555+55552222 đồng dư với 7(mod 7)
=>22225555+55552222 đồng dư với 0(mod 7)
=>22225555+55552222 chia hết cho 7
=>ĐPCM