\(2^{??}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Mình giải một dạng.Dạng còn lại mình chỉ hướng dẫn thôi.

a) \(A=3+3^2+3^3+...+3^{10}\) (đặt A)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^8\left(3+3^2\right)\)

\(=11\left(1+3^2+...+3^8\right)⋮11^{\left(đpcm\right)}\)

b) Làm tương tự bằng cách gộp 3 số liên tiếp vào ngoặc

a) (3+32+33+34+35)+(36+37+38+39+310)

=3(1+3+32+33+34) + 36(1+3+32+33+34)

=3.121+36.121\(⋮\)11

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

27 tháng 2 2019

Trả lời :

Dấu " - " của phần b trong phần của pn làm đou roy hả pn (: ?

Đúng sai thặc mak 

Hok tốt

27 tháng 2 2019

đề là tìm x,y 

phải có 1 kết luận

7 tháng 4 2018

Câu 1 : 

Ta có : 

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)

\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên : 

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)

Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)\(A=99-B>99-1=98\)

\(\Rightarrow\)\(A>98\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(98< A< 99\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Bài 2 a) \(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{31}{99}\)

13 tháng 12 2018

A=2X2^2012+2^2X2^2012+2X2^2014+2^2X2^2014+2X2^2016+2^2X2^2016                                                                                                   A=2^2012X(2+2^2)+2^2014X(2+2+2^2)+2^20116X(2+2^2)                                                                                                                               A=2^2012X6+2^2014X6+2^2016X6                                                                                                                                                                   A=6X(2^2012+2^2014+2016)                                                                                                                                                                                  Vì 6x(2^2012+2^2014+2^20160 chia hết cho 6 suy ra A chia hết cho 6. Vì A chia hết cho 6 nên A là bội của 6                                          CHÚC HỌC TỐT

16 tháng 10 2017

\(A=5+5^2+5^3+...+5^8\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^6.30\)

Vì 30\(⋮\)30

\(\Rightarrow A⋮30\)\(\Rightarrow A\in B\left(30\right)\)

25 tháng 2 2018

A=1+(21+22+2324)+...+(297+298+299+2100)

A=1+2(1+2+22+23)+...+297(1+2+22+23)

A=1+(1+2+22+23)(2+...+297)

A=1+15(2+...+297)

Mà 15(2+...+297) chia hết cho 15

=> A chia 15 dư 1

25 tháng 3 2018

Đặt \(K=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(\Leftrightarrow K=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

..............

\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(K< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(\Rightarrow\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}^{\left(đpcm\right)}\)