Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\) \(\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
Ta có :
\(\dfrac{-6}{7}+\dfrac{2}{5}=\dfrac{\left(-30\right)+14}{35}=\dfrac{-16}{35}\)
\(\dfrac{-3}{105}+\dfrac{17}{35}=\dfrac{1+17}{35}=\dfrac{18}{35}\)
\(\Rightarrow-16< 7x< 18\)
\(\Rightarrow7x\in\left\{-14;14;7;-7;0\right\}\)
\(\Rightarrow x\in\left\{-2;2;1;-1;0\right\}\)
Vậy \(x\in\left\{-2;2;1;-1;0\right\}\)
Ta có: \(S=\dfrac{105}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+105}\)
\(=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{a}{a\left(b+1+bc\right)}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{bc+b+1}\)
\(=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy S = 1
Thay \(abc=105\) ta có:
\(S=\dfrac{abc}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+bc}\)
\(\Rightarrow S=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy \(S=1\)
\(\frac{-105}{2}< x< \frac{20}{7}\)
\(\Rightarrow\frac{-735}{14}< x< \frac{40}{14}\)
\(\Rightarrow x\in\left\{\frac{-734}{14};\frac{-733}{14};...;\frac{39}{14}\right\}\)
Đề bạn thiếu \(x\inℤ\)
\(\frac{-105}{2}=-52.5;\frac{20}{7}\approx2.85\)
\(\Rightarrow-52.5< x< 2.85\left(x\inℤ\right)\)
\(\Rightarrow x\in\left\{-52;-51;-50;...-1;0;1;2\right\}\)
\(A=\frac{7}{9}+\frac{7}{45}+\frac{7}{105}+...+\frac{7}{27645}\)
\(=7\left(\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+...+\frac{1}{27645}\right)\)
\(=7.\frac{1}{3}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9215}\right)\)
\(=\frac{7}{3}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{95.97}\right)\)
Đặt \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{95.97}\)
\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{95.97}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}\)
\(=1-\frac{1}{97}=\frac{96}{97}\)
\(\Rightarrow S=\frac{96}{97}:2=\frac{96}{97.2}=\frac{48}{97}\). Thay vào \(A\) ta có:
\(A=\frac{7}{3}.\frac{48}{97}=\frac{112}{97}\)
Vậy \(A=\frac{112}{97}\).
\(-1\frac{5}{7}.15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{2}{7}-\frac{4}{5}+\frac{1}{7}\right)\)
\(=\frac{-12}{7}.15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{-13}{35}\right)\)
\(=\left(\frac{-12}{7}+\frac{-2}{7}\right).15+39\)
\(=\left(-2\right).15+39\)
\(=\left(-30\right)+39\)
\(=9\)
a) \(37+\left(-27\right)=10=\left(-27\right)+37\)
b) \(16+(-16)=0=(-105)+105\)
a)37+(-27)=10và -27+37=10
vậy 37+(-27)=-27+37
b)16+(-16)=0 và -105+105=0
vậy 2 kết quả này bằng nhau
\(105^x.105^3=105^7\)
\(105^x=105^7:105^3\)
\(105^x=105^4\)
\(=>x=4\)
105x . 1053 = 1057
105x = 1057 - 1053
=> x = 7 - 3
x = 4