
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lớp 8 nên sử dụng hằng đẳng thức
(=) X3 +3x2 +y3+5y2-x3-y3=0
(

1) \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2) \(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
3) \(x^4+2x^2-3\)
\(=\left(x^2+1\right)^2-4\)
\(=\left(x^2+1-2\right)\left(x^2+1+2\right)\)
\(=\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4) \(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)
1, \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+6x^2+11x+6\)
\(=\left(x^3+3x^2\right)+\left(3x^2+9x\right)+\left(2x+6\right)\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

a) Áp dụng hằng đẳng thức số 3 bạn nhé
b) (2x + 3)(4x^2 - 6x +9) = 8x^3 + 9
Thay x= 120:2 = 60 vào biểu thức.
8* 60^3 + 9 = 1728009
c) = (2x + 1)^3
Thay x= -0,5 vào biểu thức
[2*(-0,5)+1]^3 = 0
d) = x^2 - 49 - x^2 - 2x - 1 = -50 - 2x
Thay x=49 vào biểu thức.
-50 - 2* 49 = -148

dùng phân tích thành nhân tử
thì x3 - 5x2 + x - 5 = (x-2)(x2-3x-5) - 15
để phân số trên thuộc Z
=> x3 - 5x2 + x - 5 chia hết cho x-2
mà (x-2)(x2-3x-5) chia hết x-2
=> -15 chia hết x-2
=> x-2 thuộc Ư(-15)
đến đây bn tự tìm
có j hok hiểu hỏi mik nha
chúc bn thành công trong cuộc sống

Bạn thấy: x^4 >0 ; x^2 >0 ; 5/x^4 >0 và 2x^2 >0 (1)
Vậy B > hoặc bằng 0.
Dấu = xảy ra khi (1) = 0.
=> MaxB = 1
Ủng hộ nha!!
Xác đinh a,b để đa thức
\(x^4-2^3+3x^2+ax+b\)
là bính phương của 1 đa thức
Trình bày cách làm nữa nha

TH1 : Đặt \(x^4-2x^3+3x^2+a.x+b=\left(x^2+cx+d\right)^2\)
\(\Rightarrow x^4-2x^3+3x^2+a.x+b=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)
Đồng nhất hệ số có :
- \(2c=-2\Rightarrow c=-1\)
- \(c^2+2d=3\Rightarrow1+2d=3\Rightarrow d=1\)
- \(2cd=a\Rightarrow a=2.\left(-1\right).1=-2\)
- \(d^2=b\Rightarrow b=1^2=1\)
\(\Rightarrow x^4-2x^3+3x^2+a.x+b=x^4-2x^3+3x^2-2x+1\)
TH2: Đặt \(x^4-2x^3+3x^2+a.x+b=\left(-x^2+cx+d\right)^2\)
Giải tương tự như trên, được \(\hept{\begin{cases}a=-2;b=-1\\c=1;d=-1\end{cases}}\)
Vậy \(a=-2;b=1\)

Hình như có cả abc khac 0 nữa mà nếu như z thì giải nè
Từ a+b+c=0 =>a= - (b+c)
a^2 = (b+c)^2
b= - (a+c)
b^2= (a+c)^2
c= - (a+b)
c^2=(a+b)^2
M= 1/a^2+b^2-(a+b)^2 + 1/a^2+c^2-(a+c)^2 + 1/b^2+c^2-(b+c)^2
M= 1/-2ab + 1/-2ac + 1/-2bc
M= -c/2abc + -b/2abc + -a/2abc
M= -(a+b+c)/2abc
mà a+b+c=0
Vậy M=0

(a-b)^2 + (a-c)^2 = 4(a^2 + b^2 + c^2 - ab - bc - ca)
a^2 - 2ab + b^2 + a^2 - 2ac + c^2 = 4a^2 + 4b^2 + 4c^2 - 4ab - 4bc - 4ca
- 2a^2 - 3b^2 - 3c^2 - 2ab - 2ac = - 4ab - 4bc - 4ac
2a^2 + 3b^2 + 3c^2 + 2ab + 2ac = 4ab + 4bc + 4ca
2a^2 + 3b^2 + 3c^2 = 2ab + 4bc + 2ac
(a-b)^2 + (b-c)^2 + (a-c)^2 = 0 [ đoạn này hơi tắt]
mà (a-b)^2 ; (b-c)^2 ; (a-c)^2 > hoặc = 0
=> a = b = c
mik nha
\(102^2-2^2\)
\(=\left(102-2\right)^2\)
\(=100^2=10000\)
~GOOD STUDY~
1022 - 22 = ( 102 - 2 )( 102 + 2 ) = 100.104 = 10 400