K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)

\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu

\(A=\frac{\frac{101.102}{2}}{50.1+1}\)

\(A=\frac{5151}{51}\)

\(A=101\)

4 tháng 8 2016

Đặt A = 101+100+....+3+2+1

=> Số số hạng của A là: (101-1)+1 = 101 (số)

Tổng A là: (101+1) x 101 :2 = 5151

Đặt B = 101 -100+99 -98+97+...+3-2+1

=> 100 +98+....+1

=> Số số hạng: (100-1)+1 = 100 (số)

Tổng B là: (100 +1) x 100 :2 = 5050

Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)