Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M\left(x\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{100}\)
\(=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+\left(-1\right)^5+...+\left(-1\right)^{98}+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=1+\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)+1\)
\(=1\)
\(N\left(-1\right)=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+\left(-1\right)^8+...+\left(-1\right)^{100}\)
\(=1+1+1+1+...+1\)
\(=50.1=50\)
\(M\left(-1\right)-N\left(-1\right)=1-50=-49\)
\(f\left(x\right)-g\left(x\right)=\left(1+x+x^2+x^3+...+x^{100}\right)-\left(x^2+x^4+x^6+...+x^{100}\right)\)
\(=1+x+x^2+...+x^{100}-x^2-x^4-...-x^{100}\)
\(=1+x+x^3+x^5+...+x^{99}\)
Thay x = -1 vào f(x) - g(x) ta được:
\(1+\left(-1\right)+\left(-1\right)^3+...+\left(-1\right)^{99}\)
\(=1-1-...-1\) ( 51 c/s 1 )
\(=-50\)
\(f\left(x\right)-g\left(x\right)=1+x+x^2+x^3+...+x^{100}-\left(x^2+x^4+...+x^{100}\right)\)
\(=1+x+x^3+x^5+...+x^{99}\)
Thay x=-1 vào f(x)-g(x) ta có:
\(f\left(x\right)-g\left(x\right)=1+\left(-1\right)+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{99}\)
\(=1-1-1-...-1=-1-1-...-1\left(49cs\right)\)
\(=-1.49=-49\)
câu này cần có điều kiện \(\left(x;y\in Z\right)\) mới tìm được
để mk lm với điều kiện \(\left(x;y\in Z\right)\) nha
ta có : \(\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}=100\)
\(\Leftrightarrow\left(3x-\dfrac{1}{5}\right)^{200}=100-\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}\ge0\)
\(\Rightarrow\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}\le100\) \(\Leftrightarrow\dfrac{-2\left(\sqrt[100]{100}-\dfrac{4}{7}\right)}{5}\le y\le\dfrac{2\left(\sqrt[100]{100}-\dfrac{4}{7}\right)}{5}\)
\(\Rightarrow y=0\left(y\in Z\right)\)
với \(y=0\) thì ta có : \(\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{4}{7}\right)^{100}=100\)
\(\Rightarrow\left(3x-\dfrac{1}{5}\right)^{200}=100-\left(\dfrac{4}{7}\right)^{100}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{1}{5}=\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}\\3x-\dfrac{1}{5}=-\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}+\dfrac{1}{5}}{3}\\x=\dfrac{-\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}+\dfrac{1}{5}}{3}\end{matrix}\right.\)
vì 2 giá trị này \(\notin Z\) \(\Rightarrow x\in\varnothing\)
vậy phương trình vô nghiệm .
Có:
\(f\left(x\right)=1+x^2+x^4+x^6+...+x^{100}\)
Ta có từng trường hợp:
TH1:
\(f\left(0\right)=1+0^2+0^3+0^4+0^6+...+0^{100}\)
\(=1+0+0+0+0+...+0=1\)
TH2:
\(f\left(1\right)=1+1^2+1^4+1^6+...+1^{10}\)
\(=1+1+1+1+...+1\) (Có 51 chữ số 1)
\(=51\)
TH2:
\(f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+...+\left(-1\right)^{100}\)
\(=1+1+1+1+...+1\) (Có 51 chữ số 1)
= 51
Chúc bạn học tốt!
\(100:\left(x-1\right)^2=4\)
\(\left(x-1\right)^2=100:4=25\)
\(\left(x-1\right)^2=5^2\)
\(\Rightarrow x-1=5\)
\(x=5+1=6\)
100 : (x - 1)² = 4
(x - 1)² = 100 : 4
(x - 1)² = 25
x - 1 = 5 hoặc x - 1 = -5
*) x - 1 = 5
x = 5 + 1
x = 6
*) x - 1 = -5
x = -5 + 1
x = -4
Vậy x = -4; x = 6