Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
\(A=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+1^2\right)\)
\(=100^2+98^2+...+2^2-99^2-97^2-...-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1\cdot\left(100+99\right)+1\cdot\left(98+97\right)+...+1\cdot\left(2+1\right)\)
\(=1\cdot\left(100+98+98+...+2+1\right)\)
\(=\dfrac{100\cdot\left(100+1\right)}{2}=5050\)
\(99^{100}:11=99.99^{99}:11=9^{99}.\left(99:11\right)=9.9^{99}\).
Vì vậy:
\(99^{100}:11=9.99^{99}=99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}\)\(>98^{99}+97^{99}+96^{99}+95^{99}+94^{99}+93^{99}+92^{99}+91^{11}\).
Ta có:
\(\frac{x+1}{98}+1+\frac{x+2}{97}+1=\frac{x+3}{96}+1+\frac{x+4}{95}+1\)
\(\frac{x+1}{98}+\frac{98}{98}+\frac{x+2}{97}+\frac{97}{97}=\frac{x+3}{96}+\frac{96}{96}+\frac{x+4}{95}+\frac{95}{95}\)
\(\frac{x+99}{98}+\frac{x+99}{97}=\frac{x+99}{96}+\frac{x+99}{95}\)
\(\frac{x+99}{98}+\frac{x+99}{97}-\frac{x+99}{96}-\frac{x+99}{95}=0\)
\(\left(x+99\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Vì: \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)nên x+99=0
=> x=-99
100 + 98 + 96 + 94 +.....+ 2 - 97 -95
= 100 + (98 - 97) + (96-95) + ........ + (2-1)
= 100 + 1 +1 +....... + 1
= 100 +1 . 49
= 149