K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}-\sqrt{5^2+2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}\)\(\)rồi sau đấy thành hằng đẳng thức, chắc bạn chỉ mắc chỗ phân tích vậy thôi

15 tháng 5 2020

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Bạn xem lại đề. $40\sqrt{2}-57< 0$ nên không thể nằm trong căn được!

Sửa đề: \(\sqrt{57-40\sqrt{2}}-\sqrt{57+40\sqrt{2}}\)

Ta có: \(\sqrt{57-40\sqrt{2}}-\sqrt{57+40\sqrt{2}}\)

\(=\sqrt{32-2\cdot4\sqrt{2}\cdot5+25}-\sqrt{32+2\cdot4\sqrt{2}\cdot5+25}\)

\(=\sqrt{\left(4\sqrt{2}-5\right)^2}-\sqrt{\left(4\sqrt{2}+5\right)^2}\)

\(=4\sqrt{2}-5-4\sqrt{2}-5=-10\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2018

\(L=0\)

23 tháng 8 2018

\(L=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{\left|40\sqrt{2}-57\right|}\)

\(=\sqrt{40\sqrt{2}-57}-\sqrt{40\sqrt{2}-57}\)

\(=0\)

Ta có : \(D=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)

\(=\left(\sqrt{57}+6\right)^2-\left(3\sqrt{6}+\sqrt{38}\right)^2\)

\(=57+12\sqrt{57}+36-\left(54+12\sqrt{57}+38\right)\)

\(=93-92=1\)

Vậy : \(D=1\)

\(D=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-2\sqrt{6}-\sqrt{38}+6\right)\)

\(=\left(\sqrt{57}+6\right)^2-\left(3\sqrt{6}+\sqrt{38}\right)^2\)

\(=\left(93+12\sqrt{57}\right)-\left(92+12\sqrt{57}\right)\)

\(=1\)

16 tháng 8 2020

Mình nghĩ cậu viết sai đề hay j đó rồi

Chắc đề phải như thế này này : \(\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)

Đặt A = \(\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)

A = \(\sqrt{\left|57-40\sqrt{2}\right|}-\sqrt{40\sqrt{2}+57}\)

A = \(\sqrt{57-40\sqrt{2}}-\sqrt{40\sqrt{2}+57}\)

Nhận xét : A < 0 , Bình phương hai vế ta được :

\(A^2=\left(\sqrt{57-40\sqrt{2}}-\sqrt{57+40\sqrt{2}}\right)^2\)

\(A^2=\left(\sqrt{57-40\sqrt{2}}\right)^2+\left(\sqrt{57+40\sqrt{2}}\right)^2-2.\sqrt{\left(57-40\sqrt{2}\right)\left(57+40\sqrt{2}\right)}\)

=> \(A^2=57-40\sqrt{2}+57+40\sqrt{2}-2\sqrt{\left(57-40\sqrt{2}\right)\left(57+40\sqrt{2}\right)}\)

=> \(A^2=114-2\sqrt{57^2-\left(40\sqrt{2}\right)^2}\)

=> \(A^2=114-2\sqrt{3249-3200}\)

\(\Rightarrow A^2=114-2\sqrt{49}\)

\(\Leftrightarrow A^2=114-2.7\)

\(\Leftrightarrow A^2=100\)

=> A = \(\pm\sqrt{100}\) mà A < 0 => A = -10

19 tháng 7 2017

\(=-10\)

\(=-6\)