Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1+2+3^2+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow B=3+3^2+3^3+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow3B=3^2+3^3+\cdot\cdot\cdot+3^{52}\)
\(\Rightarrow3B-B=\left(3^2+\cdot\cdot\cdot+3^{52}\right)-\left(3+\cdot\cdot\cdot+3^{51}\right)\)
\(\Rightarrow2B=3^{52}-3\)
\(\Rightarrow B=\frac{3^{52}-3}{2}\)
\(1+2+3^2+3^3+...+3^{50}+3^{51}\)
Đặt tổng trên là A ta có :
\(A=3+3^2+3^3+...+3^{50}+3^{51}\)
\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)
\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)
\(2A=3^{52}-3\)
\(A=\frac{3^{52}-3}{2}\)
Vậy...
Cbht
Gọi tổng trên là S
\(S=100^2-99^2-98^2-....-1=100^2-\left(100-1\right)^2-\left(100-2\right)^2-.....-\left(100-99\right)^2=100^2-100^2-100^2-.....-100^2+2.100+2.2.100+2.3.100+.....+2.99.100-1^2-2^2-3^2-....-99^2-100^2+100^2\)
\(A=1^2+2^2+99^2+100^2\)
=1.(2-1)+2.(3-1)+3.(4-1)+....+99.(100-1)+100.(101-1)
=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100
=(1.2+2.3+3.4+...+99.100+100.101)-(1+2+3+...+100)
= [1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99) ] /3 + [(100+1).100 /2]
=[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+100.101.102-99.10.101]/3 + 5050
=100.101.102/3 + 5050
=348450
\(\Rightarrow S=-99.100^2+2.100.99.100-A=641550\)
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
\(a.3x^2-50=142\)
\(3x^2=142+50\)
\(3x^2=192\)
\(x^2=192:3\)
\(x^2=64\)
\(\Rightarrow x=8\)
vậy: x=8.
\(b.3x^2=192\)
\(x^2=192:3\)
\(x^2=64\)
\(\Rightarrow x=8\)
Vậy: x=8.
\(c.4x^2=100\)
\(x^2=100:4\)
\(x^2=25\)
\(\Rightarrow x=5\)
vậy: x=5.
\(d.x^2+7=56\)
\(x^2=56-7\)
\(x^2=49\)
\(\Rightarrow x=7\)
Vậy: x=7.
<câu e bạn xem lại cho mk có phải sai đầu bài không nha,tại mk thấy kết quả là 21 nhưng mà không có cái nào bình phương =21 cả>
\(A=2+2^2+2^3+...+2^{100}\)
\(A=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(A=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(A=2+2^2\cdot7+...+2^{98}\cdot7\)
\(A=2+7\cdot\left(2^2+...+2^{98}\right)\)
Dễ thấy \(7\cdot\left(2^2+...+2^{98}\right)⋮7\)
\(\Rightarrow\) A chia 7 dư 2
A=2+(22+23+24)+...+(298+299+2100)A=2+(22+23+24)+...+(298+299+2100)
A=2+22(1+2+22)+...+298(1+2+22)A=2+22(1+2+22)+...+298(1+2+22)
A=2+22⋅7+...+298⋅7A=2+22⋅7+...+298⋅7
A=2+7⋅(22+...+298)A=2+7⋅(22+...+298)
Ta thấy 7⋅(22+...+298)⋮77⋅(22+...+298)⋮7
⇒⇒ A chia 7 dư 2