Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: xk2 - yk2 = (xk - yk)(xk + yk) = (xk - yk) . 9 (Với \(k\in N;1\le k\le9\)).
Do đó VT - VP = 9(x1 - y1 + x2 - y2 + ... + x10 - y10) = 9[(x1 + x2 + ... + x10) - (y1 + y2 + ... + y10)] = 0
1) Áp dụng bất đẳng thức AM-GM :
\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)
Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)
1) Anh phương làm lạ zậy?
Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)
Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))
Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)
Vậy P min là 5/2 khi x = 2
nhìn nó dài nhưng chỉ cần lập luận vài bước thui
Điều kiện : \(x_1,x_2,x_3,...,x_{2000}\ne0.\)
Từ (1) suy ra \(2x_1x_2=x_2^2+1>0\Rightarrow x_1\)và \(x_2\)cùng dấu.
Tương tự ta cũng có:
Từ (2) suy ra \(x_2\)và \(x_3\)cùng dấu
.....................................................
Từ (1999) suy ra \(x_{1999}\)và \(x_{2000}\)cùng dấu
Từ (2000) suy ra \(x_{2000}\)và \(x_1\)cùng dấu
Như vậy : các ẩn số \(x_1,x_2,...,x_{2000}\)cùng dấu .
Mặt khác nếu \(\left(x_1,x_2,...,x_{2000}\right)\)là một nghiệm thì \(\left(-x_1,-x_2,...,-x_{2000}\right)\)cũng là nghiệm . Do đó chỉ cần xét \(x_1,x_2,...,x_{2000}>0\).
Khi đó : \(2x_1=x_2+\frac{1}{x_2}\ge2\Rightarrow x_1\ge1\Rightarrow\frac{1}{x_1}\le1\)
\(2x_2=x_3+\frac{1}{x_3}\ge2\Rightarrow x_2\ge1\Rightarrow\frac{1}{x_2}\le1\)
...............................................................................................
Tương tự , ta có: \(x_{2000}\ge1\Rightarrow\frac{1}{x_{2000}}\le1\)
Suy ra : \(\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\le x_1+x_2+...+x_{2000}\)
Mặt khác; nếu cộng từng vế 2000 phương trình của hệ , ta có:
\(x_1+x_2+...+x_{2000}=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\)
Dấu '=' xảy ra khi và chỉ khi \(x_1=x_2=...=x_{2000}=1\)
Tóm lại hệ đã cho có 2 nghiệm :
\(\left(x_1,x_2,...,x_{2000}\right)=\left(1;1;...;1\right),\left(-1;-1;...;-1\right).\)
Lời giải:
Xét pt đầu tiên. Theo định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=-1\end{matrix}\right.\)
Khi đó:
\(y_1+y_2=1+\frac{1}{x_1}+1+\frac{1}{x_2}=2+\frac{1}{x_1}+\frac{1}{x_2}\)
\(=2+\frac{x_1+x_2}{x_1x_2}=2+\frac{5}{-1}=-3\)
Và:
\(y_1y_2=\left(1+\frac{1}{x_1}\right)\left(1+\frac{1}{x_2}\right)=\frac{(x_1+1)(x_2+1)}{x_1x_2}\)
\(=\frac{x_1x_2+(x_1+x_2)+1}{x_1x_2}=\frac{-1+5+1}{-1}=-5\)
Vậy $y_1+y_2=-3; y_1y_2=-5$
Theo định lý Viete đảo, thì $y_1,y_2$ là nghiệm của PT:
\(y^2+3y-5=0\)
BĐT Cauchy-Schwarz:
\(\left(1+1+1+...+1\right)\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\left(\text{2017 số 1}\right)\)
\(\Leftrightarrow2017\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\)
\(\Leftrightarrow x^2_1+x^2_2+...+x^2_{2017}\ge\dfrac{\left(x_1+x_2+...+x_{2017}\right)^2}{2017}\)
Khi \(\dfrac{x_1}{1}=\dfrac{x_2}{1}=...=\dfrac{x_{2017}}{1}\Leftrightarrow x_1=x_2=...=x_{2017}\)
Bạn j j biết làm bài ơi, giải hộ với. Bạn chưa biết làm thì nghĩ hộ t với. Làm được tớ cho mấy cái kẹo mút này...
Có :
\(3k^2+3k+1=\left(k-1\right)^3-k^3\)
\(\Rightarrow x_k=\frac{3k^2+3k+1}{k^3\left(k+1\right)^3}=\frac{\left(k-1\right)^3-k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)
Áp dụng , ta được :
\(P=\frac{1}{1^3}-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{3^3}-\frac{1}{4^3}...+\frac{1}{2018^3}-\frac{1}{2019^3}=1-\frac{1}{2009^3}\)
Bổ sung thêm dữ kiện: Không có trận đấu tennis hòa
Một người đều chơi 9 trận với 9 người khác và không có trận hòa
Do đó \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)
Mà tổng số trận thắng bằng tổng số trận thua, do đó: \(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)
Ta có \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+....+y_{10}^2\right)\)
\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+....+\left(x_{10}^2-y_{10}^2\right)=9\left(x_1-y_1\right)+9\left(x_1-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)
\(=9\left(x_1-y_1+x_2-y_2+...+x_{10}-y_{10}\right)=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+..+y_{10}\right)\right]=0\)
Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)