K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2024

1033 = 100..00 (33 chữ số 0)

13 tháng 8 2020

\(\left(\frac{15}{7}\right)^2+\left(\frac{20}{7}\right)^2=\frac{225}{49}+\frac{400}{49}=\frac{625}{49}\)

5 tháng 7 2020

Đặt \(x^{10}=a\ge0\)

Khi đó:

\(a^{10}-10a+2029\)

\(=\left(a^{10}+1+1+1+1\right)-10a+2025\)

\(\ge5\sqrt[5]{a^{10}}-10a+2025\)

\(=5a^2-10a+2025\)

\(=5\left(a^2-2a+1\right)+2020\)

\(=5\left(a-1\right)^2+2020\ge2020\)

Đẳng thức xảy ra tại x=1 hoặc x=-1

Câu 2:

a: \(=\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{72\cdot2}=12\)

b: \(=\sqrt{\left(65-63\right)\left(65+63\right)}=\sqrt{128\cdot2}=16\)

c: \(=\sqrt{\left(221-220\right)\left(221+220\right)}=\sqrt{441}=21\)

d: \(=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{225\cdot9}=3\cdot15=45\)

28 tháng 12 2016

bạn biết ko

28 tháng 12 2016

biết chứ sao ko?

10 tháng 8 2019

sin10 < cos 10 < tan45 <cot33

10 tháng 8 2019

Uầy ghi luôn đề bài à ???????

Đáp án:

=> cos 10 ; sin 10 ; cot33 ;tan 45 

17 tháng 8 2023

\(A=sin^210^o+cos^220^o+sin^280^o+cos^270^o\)

\(A=\left(sin^210^o+sin^280^o\right)+\left(cos^220^o+cos^270^o\right)\)

\(A=0+0\)

\(A=0\)

a: \(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)

\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)

\(=2\cdot sin^270^0+1\)

b: \(=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)

\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)

=1+1

=2

\(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)

\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)

\(=2sin^270^0+1\)

\(B=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)

\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)

=1+1

=2

14 tháng 10 2018

Giải:

\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}\)

\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}\)

\(=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|\)

\(=5-\sqrt{17}+\sqrt{17}-4\)

\(=1\)

Vậy ...

15 tháng 10 2018

\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}=\sqrt{25-2.5.\sqrt{17}+17}+\sqrt{16-2.4.\sqrt{17}+17}=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|=5-\sqrt{17}+\sqrt{17}-4=1\)