Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
4.a)\(x-2\sqrt{x}+3\)
\(=x-2\sqrt{x}+1+2\)
\(=\left(\sqrt{x}-1\right)^2+2\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)
\(\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
b)Ta có:
\(x-4\sqrt{y}+13\ge0\)
\(\Leftrightarrow x-4\sqrt{y}\ge-13\)
Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)
Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)
c)Ta có:
\(2x-4\sqrt{y}+6\ge0\)
\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)
\(\Leftrightarrow x-2\sqrt{y}\ge-3\)
Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)
Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)
d)Ta có:
\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)
\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)
Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành
\(2a=-a^2+8\)
\(\Leftrightarrow a^2+2a-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)
\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)
\(\Leftrightarrow-x^2+8x-12=4\)
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
ĐK: \(4\leq x\leq 6\)
Ta thấy biểu thức vế trái luôn không âm theo tính chất căn bậc 2
Vế phải: \(x^2-10x-27=x(x-10)-27< 0-27< 0\) với mọi \(4\leq x\leq 6\), tức là biểu thức vế phải luôn âm
Do đó pt vô nghiệm
Câu 2:
\(x\geq -3; y\geq 3; z\geq 3\)
Ta có: \(\sqrt{x+3}+\sqrt{y-3}+\sqrt{z-3}=\frac{1}{2}(x+y+z)\)
\(\Leftrightarrow 2\sqrt{x+3}+2\sqrt{y-3}+2\sqrt{z-3}=x+y+z\)
\(\Leftrightarrow (x+3-2\sqrt{x+3}+1)+(y-3-2\sqrt{y-3}+1)+(z-3-2\sqrt{z-3}+1)=0\)
\(\Leftrightarrow (\sqrt{x+3}-1)^2+(\sqrt{y-3}-1)^2+(\sqrt{z-3}-1)^2=0\)
Vì \((\sqrt{x+3}-1)^2; (\sqrt{y-3}-1)^2; (\sqrt{z-3}-1)^2\) đều không âm nên để tổng của chúng bằng $0$ thì:
\((\sqrt{x+3}-1)^2=(\sqrt{y-3}-1)^2=(\sqrt{z-3}-1)^2=0\)
\(\Rightarrow x=-2; y=z=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{4}\end{array}\right.\)
chịu nhìn rối quá!![oho oho](https://hoc24.vn/media/cke24/plugins/smiley/images/oho.png)
mình chả hiểu s nó lại r như z nữa