Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow2x+4=2x+3\)
\(\Leftrightarrow0x=-1\)(vô nghiệm)
Vậy phương trình vô nghiệm.
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow2x+7=-10\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)
a)
$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$
$=2(2x+1)$
b)
$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$
c)
$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$
$=-9x+4$
d)
$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$
$=6x^2+12x+9$
e)
$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$
$=x^3-x^2-3x+11$
f)
$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$
$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$
b: \(\Leftrightarrow x^3-4x-3\left(4x^2-4x+1\right)-2x-5=-6x^2-6x\)
\(\Leftrightarrow x^3-4x-12x^2+12x-3-2x-5=-6x^2-6x\)
\(\Leftrightarrow x^3-12x^2+6x-8+6x^2+6x=0\)
\(\Leftrightarrow x^3-6x^2+12x-8=0\)
=>x-2=0
hay x=2
c: \(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow6x^2+2-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
hay x=-1/2
a)5(x-6)=4(3 -2x)
5x-30=12-8x
5x -8x=30+12
-3x=42
x=42 : (-3)
x=-14
a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0
1) x - 3 = 0 ⇔ x = 3
2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5
Vậy tập nghiệm của phương trình là S = {3;-2,5}
b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0
⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0
1) x - 2 = 0 ⇔ x = 2
2) -x + 5 = 0 ⇔ x = 5
Vậy tập nghiệm của phương trình là S = {2;5}
c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.
Vậy tập nghiệm của phương trình là x = 1
d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0
⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0
1) x - 2 = 0 ⇔ x = 2
2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72
Vậy tập nghiệm của phương trình là S = {2;72}
e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0
1) x - 7 = 0 ⇔ x = 7
2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1
Vậy tập nghiệm phương trình là: S= { 7; 1}
f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0
⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0
⇔ x = 3 hoặc x = 1
Vậy tập nghiệm của phương trình là S = {1;3}
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
\(\left(x-3\right)\left(x-1\right)-3\left(x-3\right)\)
\(=\left(x-3\right)\left(x-1-3\right)\)
\(=\left(x-3\right)\left(x-4\right)\)
\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)
\(=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)
\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)
A = \(\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)\)
A = \(x^2-6x+9-4x^2+1=-3x^2-6x+10\)
B = \(\left(2x-3\right)^2-\left(x-1\right)\left(2x+1\right)\)
B = \(4x^2-12x+9-2x^2-x+2x+1\)
B = \(2x^2-11x+10\)
C = \(4x\left(x-3\right)^2-\left(4-2x\right)^2\)
C = \(4x\left(x^2-6x+9\right)-16+16x-4x^2\)
C = \(4x^3-24x^2+36x-16+16x-4x^2\)
C = \(4x^3-28x^2+52x-16\)
D = \(3x\left(x-1\right)\left(x-2\right)-x\left(2x-1\right)^2\)
D = \(\left(3x^2-3x\right)\left(x-2\right)-x\left(2x-1\right)^2\)
D = \(3x^3-6x^2-3x^2+6x-x\left(4x^2-4x+1\right)\)
D = \(3x^3-9x^2+6x-4x^3+4x^2-x\)
D = \(-x^3-5x^2+5x\)
\(\frac{1-X}{X+1}+3=\frac{2X+3}{X+1}\)
ĐKXĐ : X ≠ -1
<=> \(\frac{1-X}{X+1}+\frac{3\left(X+1\right)}{X+1}-\frac{2X+3}{X+1}=0\)
<=> \(\frac{1-X+3X+3-2X+3}{X+1}=0\)
<=> \(\frac{7}{X+1}=0\)
=> 7 = 0 ( VÔ LÍ )
VẬY PHƯƠNG TRÌNH VÔ NGHIỆM
\(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}ĐK:x\ne-1\)
\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3x+3}{x+1}=\frac{2x+3}{x+1}\)
Khử mẫu : \(\Rightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow2x+4-2x-3=0\Leftrightarrow1\ne0\)
Vậy phương trình vô nghiệm