\(\sqrt{x}\) t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

1.

a) Lấy $x_1\neq x_2\in (0;+\infty)$

Ta có:
\(\frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{\sqrt{x_1}-\sqrt{x_2}}{x_1-x_2}=\frac{1}{\sqrt{x_1}+\sqrt{x_2}}>0\)

\(\Rightarrow \) hàm số đồng biến trên $(0;+\infty)$

b) Lấy $x_1\neq x)2\in [1+\infty)$

Ta có:

\(\frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{\sqrt{x_1-1}-\sqrt{x_2-1}}{x_1-x_2}=\frac{1}{\sqrt{x_1-1}+\sqrt{x_2-1}}>0\)

Do đó hàm số đồng biến tập xác định $[1;+\infty)$

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

Lời giải:

a) Lấy $x_1,x_2\in\mathbb{R}; x_1\neq x_2$

Để $y=mx^3$ đồng biến thì:

$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$

$\Leftrightarrow \frac{m(x_1^3-x_2)^3}{x_1-x_2}>0$

$\Leftrightarrow m(x_1^2+x_1x_2+x_2^2)>0$

$\Leftrightarrow m>0$ (do $x_1^2+x_1x_2+x_2^2=(x_1+\frac{x_2}{2})^2+\frac{3}{4}x_2^2>0$ với mọi $x_1\neq x_2$

b)

Điều kiện: $m\leq 2$

Ta thấy, với $x_1\neq x_2\in (2;+\infty)$:

\(\frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{\sqrt{x_1-m}-\sqrt{x_2-m}}{x_1-x_2}=\frac{1}{\sqrt{x_1-m}+\sqrt{x_2-m}}>0\) với mọi $x\in (2;+\infty); m\leq 2$

Do đó hàm số đồng biến khi $m\leq 2$

c)

Lấy $x_1,x_2\in (0;+\infty)$. Để hàm số đồng biến trên $(0;+\infty)$ thì:

$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$

$\Leftrightarrow (\frac{m}{x_1^2}-\frac{m}{x_2^2}).\frac{1}{x_1-x_2}>0$

$\Leftrightarrow \frac{-m(x_2+x_1)}{x_1^2x_2^2}>0$

$\Leftrightarrow -m>0$ (do $\frac{x_2+x_1}{x_1^2x_2^2}>0$ với mọi $x_1,x_2>0$

$\Leftrightarrow m< 0$

19 tháng 9 2020

de qua de

12 tháng 4 2017

a) hệ số a=-2=>y luôn nghịch biến

b) a=1 >0 và -b/2a =-5 => (-5;+vc) y luôn đồng biến

c) hàm y có dạng y=a/(x+1)

a =-1 => y đồng biến (-vc;-1) nghich biến (-1;+vc

=>

(-3;-2) hàm y đồng biến

(2;3) hàm y đồng biến

26 tháng 4 2017

a) Hàm số \(y=-2x+3\) có a = -2 < 0 nên hàm số nghịch biến trên R.
b. Xét tỉ số \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left(x^2_1+10x_1+9\right)-\left(x^2_2+10x_2+9\right)}{x_1-x_2}\)
\(=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2+10\right)}{x_1-x_2}=x_1+x_2+10\).
Với \(x_1;x_2\notin\left(-5;+\infty\right)\) thì \(x_1+x_2+10\ge0\) nên hàm số y đồng biến trên \(\left(-5;+\infty\right)\).
c) Xét tỉ số: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}}{x_1-x_2}=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Trên \(\left(-3;-2\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}< 0\) nên hàm số y nghịch biến trên \(\left(-3;-2\right)\).
Trên \(\left(2;3\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}>0\) nên hàm số y đồng biến trên \(\left(2;3\right)\).

14 tháng 10 2020

a, Lấy \(x_1;x_2\in R\left(x_1\ne x_2\right)\)

Ta có \(y_1-y_2=3x_1-3x_2\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=3>0\)

\(\Rightarrow\) Hàm số đồng biến trên R

b, Lấy \(x_1;x_2\in\left(0;+\infty\right)\left(x_1\ne x_2\right)\)

Ta có \(y_1-y_2=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=\frac{1}{\sqrt{x_1}+\sqrt{x_2}}>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(0;+\infty\right)\)

14 tháng 10 2020

d, Lấy \(x_1;x_2\in\left(-\infty;-1\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1-y_2=\frac{4}{x_1+1}-\frac{4}{x_2+1}=-\frac{4\left(x_1-x_2\right)}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}\)

Do \(x_1;x_2\in\left(-\infty;-1\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;-1\right)\)

Lấy \(x_1;x_2\in\left(-1;+\infty\right)\left(x_1\ne x_2\right)\)

Do \(x_1;x_2\in\left(-1;+\infty\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-1;+\infty\right)\)