\(y=2x-3\) và \(y=x+1\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

1, Hoành độ giao điểm 2 đường thẳng đó là:

\(2x-3=x+1\Leftrightarrow x=4\)

Tung độ giao điểm 2 đường thẳng đó là:

\(y=2x-3=2.1-3=-1\)

Vậy tọa độ giao điểm 2 đường thẳng đó là:\(\left(4;-1\right)\)

2, Để đường thẳng (d1) đi qua A(1;-2) thì:

\(-2=\left(2m-1\right).1+n+2\\ \Leftrightarrow2m-1+n+2+2=0\\ \Leftrightarrow2m+n+3=0\left(1\right)\)

Để đường thẳng (d2) đi qua A(1;-2) thì:

\(-2=2n.1+2m-3\\ \Leftrightarrow2n+2m-3+2=0\\ \Leftrightarrow2n+2m-1=0\left(2\right)\)

Từ (1), (2) ta có hệ: \(\left\{{}\begin{matrix}2m+n+3=0\\2n+2m-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}\\n=4\end{matrix}\right.\)

 

10 tháng 3 2022

1) Xét phương trình hoành độ giao điểm của 2 đường thẳng trên ta có:

\(2x-3=x+1.\\ \Leftrightarrow2x-x=1+3.\\ \Leftrightarrow x=4.\\ \Rightarrow y=5.\)

Tọa độ giao điểm của 2 đường thẳng trên là \(\left(4;5\right).\)

2. Thay tọa độ điểm \(A\left(1;-2\right)\) vào 2 phương trình đường trên ta có:

\(\left\{{}\begin{matrix}\left(2m-1\right)+n+2=-2.\\2n+2m-3=-2.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+n=-3.\\2m+2n=1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}.\\m=4.\end{matrix}\right.\)

NV
14 tháng 4 2022

1.

Phương trình hoành độ giao điểm:

\(2x-3=x+1\Rightarrow x=4\)

\(\Rightarrow y=5\)

Vậy tọa độ giao điểm là \(\left(4;5\right)\)

2.

Hai đường thẳng cắt nhau tại A khi chúng không song song nhau và cùng đi qua A

\(\Rightarrow\left\{{}\begin{matrix}2m-1\ne2n\\\left(2m-1\right).1+n+2=-2\\2n.1+2m-3=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-1\ne2n\\2m+n=-3\\2m+2n=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n=4\\m=-\dfrac{7}{2}\end{matrix}\right.\)

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

PT hoành độ giao điểm:

\(\frac{1}{2}x^2-(2x-m+1)=0\)

\(\Leftrightarrow x^2-4x+2m-2=0(*)\)

Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ phải có 2 nghiệm phân biệt.

Điều này xảy ra khi \(\Delta'=4-(2m-2)>0\Leftrightarrow m< 3\)

Khi đó, $x_1,x_2$ sẽ là 2 nghiệm của $(*)$ thỏa mãn:

\(\left\{\begin{matrix} x_1+x_2=4\\ x_1x_2=2m-2\end{matrix}\right.\) (định lý Vi-et)

Ta có:

\(x_1x_2(y_1+y_2)+48=0\)

\(\Leftrightarrow x_1x_2(2x_1-m+1+2x_2-m+1)+48=0\)

\(\Leftrightarrow x_1x_2(x_1+x_2-m+1)+24=0\)

\(\Leftrightarrow (2m-2)(4-m+1)+24=0\)

\(\Leftrightarrow -m^2+6m+7=0\Rightarrow m=7; m=-1\). Kết hợp với đk $m< 3$ suy ra $m=-1$

NV
16 tháng 4 2019

Pt hoành độ giao điểm: \(x^2-2x-2m+1=0\)

\(\Delta'=1+2m-1=2m\ge0\Rightarrow m\ge0\)

a/ Bạn tự giải

b/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m+1\end{matrix}\right.\)

\(\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=0\)

\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2-8=0\)

\(\Leftrightarrow2\left(x_1x_2\right)^2+2x_1x_2-12=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1x_2=2\\x_1x_2=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-2m+1=2\\-2m+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{1}{2}< 0\left(l\right)\\m=2\end{matrix}\right.\)

NV
16 tháng 4 2019

Thay m=0 vào giải thôi

\(x^2-2x+1=0\Rightarrow x=1\)

Thay \(x=1\) vào pt parabol hoặc đường thẳng tùy thích được \(y=1\)

Tọa độ điểm đó là \(A\left(1;1\right)\) hoặc thích đặt B, C, D, E, F gì đó tùy