Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(f\left(x\right)+3f\left(\frac{1}{3}\right)=x^2\left(1\right)\Rightarrow f\left(\frac{1}{3}\right)+3f\left(\frac{1}{3}\right)=\left(\frac{1}{3}\right)^2\Leftrightarrow4f\left(\frac{1}{3}\right)=\frac{1}{9}\Leftrightarrow f\left(\frac{1}{3}\right)=\frac{1}{36}\)
Thay f(\(\frac{1}{3}\)) = \(\frac{1}{36}\) vào (1) được : \(f\left(x\right)=x^2-3f\left(\frac{1}{3}\right)=x^2-\frac{1}{12}\)
Vậy \(f\left(x\right)=x^2-\frac{1}{12}\)
b) \(f\left(x\right)+2f\left(\frac{1}{x}\right)=2x+\frac{1}{x}\) (2) . Thay \(x=\frac{1}{x}\) vào \(f\left(x\right)\) và \(f\left(\frac{1}{x}\right)\) được :
\(f\left(\frac{1}{x}\right)+2f\left(x\right)=\frac{2}{x}+x\) \(\Leftrightarrow2f\left(\frac{1}{x}\right)+4f\left(x\right)=\frac{4}{x}+2x\) (3)
Lấy (3) trừ (2) theo vế được: \(\left[2f\left(\frac{1}{x}\right)+4f\left(x\right)\right]-\left[f\left(x\right)+2f\left(\frac{1}{x}\right)\right]=\left(2x+\frac{4}{x}\right)-\left(2x+\frac{1}{x}\right)\)
\(\Leftrightarrow3f\left(x\right)=\frac{3}{x}\Leftrightarrow f\left(x\right)=\frac{1}{x}\)
c) \(f\left(x\right)+2f\left(-x\right)=x+1\) (4) . Thay x = -x vào f(x) và f(-x) được :
\(f\left(-x\right)+2f\left(x\right)=-x+1\Leftrightarrow2f\left(-x\right)+4f\left(x\right)=-2x+2\) (5)
Lấy (5) trừ (4) theo vế được :
\(\left[2f\left(-x\right)+4f\left(x\right)\right]-\left[f\left(x\right)+2f\left(-x\right)\right]=\left(-2x+2\right)-\left(x+1\right)\)
\(\Leftrightarrow3f\left(x\right)=-3x+1\Rightarrow f\left(x\right)=\frac{-3x+1}{3}\)
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)