K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Bấm máy tính giải phương trình bậc 4
1) x = -3

x = 1

x = \(1-\sqrt{2}\)

\(1+\sqrt{2}\)

Tương tự 1 => https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=%20x%5E4%20-%203x%5E3%20-%207x%5E2%20%2B24x%20-%208%20%3D%200
Tương tự 2 => https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=x%5E4%20-%20x%5E3%20-%204x%5E2%20%2B%20x%20%2B%201%20%3D%200

31 tháng 7 2016

Hỏi đáp Toán

6 tháng 10 2019

Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.

1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)

Ta thấy x=0 ko là nghiệm.

Chia cả 2 vế cho x2 >0:

pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)

Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)

\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)

Vậy pt vô n0.

#Walker

2 tháng 7 2018

Giúp mình với

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

NV
13 tháng 3 2020

a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm

- Với \(x\le\frac{1}{4}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)

\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)

2.

- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)

\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x< -\frac{1}{4}\)

\(\Leftrightarrow-4x-1=x^2+2x-4\)

\(\Leftrightarrow x^2+6x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)

NV
13 tháng 3 2020

3.

- Với \(x\ge\frac{5}{3}\)

\(\Leftrightarrow3x-5=2x^2+x-3\)

\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)

- Với \(x< \frac{5}{3}\)

\(\Leftrightarrow5-3x=2x^2+x-3\)

\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)

4. Do hai vế của pt đều không âm, bình phương 2 vế:

\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)

\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 4:

$3x^4+10x^3-3x^2-10x+3=0$

Ta đi phân tích $3x^4+10x^3-3x^2-10x+3$ thành nhân tử

Đặt $3x^4+10x^3-3x^2-10x+3=(x^2+ax+b)(3x^2+cx+d)$ với $a,b,c,d$ là các số nguyên

$\Leftrightarrow 3x^4+10x^3-3x^2-10x+3=3x^4+x^3(c+3a)+x^2(d+ac+3b)+x(ad+bc)+bd$

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} c+3a=10\\ d+ac+3b=-3\\ ad+bc=-10\\ bd=3\end{matrix}\right.\). Từ $bd=3$. Giả sử $b=-1$

$\Rightarrow d=-3$. Thay vào hệ có được $ac=3; c+3a=10\Rightarrow a=3; c=1$

Vậy $3x^4+10x^3-3x^2-10x+3=(x^2+3x-1)(3x^2+x-3)$

$\Leftrightarrow (x^2+3x-1)(3x^2+x-3)=0$

\(\Rightarrow \left[\begin{matrix} x^2+3x-1=0\\ 3x^2+x-3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3\pm \sqrt{13}}{2}\\ x=\frac{-1\pm \sqrt{37}}{6}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 3:

$x^4+4x^3+x^2-4x+1=0$

$\Leftrightarrow (x^4+4x^3+4x^2)-3x^2-4x+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)-x^2+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)+1-x^2=0$

$\Leftrightarrow (x^2+2x-1)^2-x^2=0$

$\Leftrightarrow (x^2+x-1)(x^2+3x-1)=0$

\(\Rightarrow \left[\begin{matrix} x^2+x-1=0\\ x^2+3x-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{5}}{2}\\ x=\frac{-3\pm \sqrt{!3}}{2}\end{matrix}\right.\)

Vậy.......