Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình??? sử dụng Hooc-ne cho nhanh nhá :v
1) \(x^4-8x^2+4x+3=0\)
( dùng máy tính ta đoán được 1 nghiệm chính xác là -3 )
\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3-3x^2+x+1=0\left(2\right)\end{matrix}\right.\)
Tiếp tục dùng máy tính ta tìm được 1 nghiệm chính xác của pt ( 2 ) là 1
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)
rồi mấy câu còn lại tương tự
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
\(\sqrt{4x-5}=1-2x\)
Điều kiện: \(4x-5\) ≥ \(0\) ⇔ \(x\) ≥ \(\dfrac{5}{4}\)
PT ⇔ \(4x-5=\left(1-2x\right)^2\)
⇔ \(4x-5=1-4x+4x^2\)
⇔ \(4x^2-8x+6=0\)
⇔ Phương trình vô nghiệm
\(\left|5x^2-11\right|=x-5\)
TH1: \(5x^2-11=x-5\)
⇔ \(5x^2-x-6=0\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-1\end{matrix}\right.\) (Loại)
TH2: \(5x^2-11=-x+5\)
⇔ \(5x^2+x-16=0\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{321}}{10}\\x=\dfrac{-1-\sqrt{321}}{10}\end{matrix}\right.\)(Thỏa mãn)
Vậy \(x=\dfrac{-1+\sqrt{321}}{10}\) và \(x=\dfrac{-1-\sqrt{321}}{10}\) là 2 nghiệm của phương trình.
\(x^4-3x^2-28=0\)
Đặt: \(t=x^2\) (\(t\) ≥ \(0\))
Ta được: \(t^2-3t-28=0\)
⇔ \(\left[{}\begin{matrix}t=7\\t=-4\end{matrix}\right.\)
Với \(t=7\) ⇒ \(x^2=7\)
⇔ \(\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)
Vậy \(x=\sqrt{7}\) và \(x=-\sqrt{7}\) là nghiệm của phương trình.
\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)
Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)
Do \(x=\pm1< 3\) nên để \(x_1< x_2< x_3< x_4< 3\) thì:
\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)
Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)
TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)
thầy cho em hỏi nếu bài này đặt \(x^2=t^{ }\left(t\ge0\right)\)
thì giải pt ẩn t có 2 nghiệm phân biệt dương
\(=>\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) em giải ra thì m>0 =)))
x 4 − 5 x 3 + 8 x 2 − 10 x + 4 = 0 ⇔ ( x 4 + 4 x 2 + 4 ) − 5 x 3 + 4 x 2 − 10 x = 0
⇔ x 2 + 2 2 − 5 x 3 + 10 x + 4 x 2 = 0 ⇔ x 2 + 2 2 − 5 x x 2 + 2 + 4 x 2 = 0
Đặt t = x 2 + 2 ta được t 2 − 5 t x + 4 x 2 = 0 ⇔ t − x t − 4 x = 0
Hay phương trình đã cho ⇔ x 2 − x + 2 x 2 − 4 x + 2 = 0
⇔ x 2 − x + 2 = 0 ( V N ) x 2 − 4 x + 2 = 0 ⇔ x = 2 ± 2
Vậy phương trình không có nghiệm nguyên
Đáp án cần chọn là: D
Đáp án: D
(x2 - 4) (x2 - 1) = 0 ⇔ x = ±2; x = ±1 nên A = {-2; -1; 1; 2}
(x2 - 4) (x2 + 1) = 0 ⇔ x2 - 4 = 0 ⇔ x = ±2 nên B = {-2; 2}
x4 - 5x2 + 4)/x = 0 ⇔ x4 - 5x2 + 4 = 0 ⇔ x = ±2; x = ±1 nên D = {-2; -1; 1; 2}
=> A = D
Lời giải:
Đặt $x^2=t$ thì PT ban đầu trở thành: \(t^2-2mt+4=0(*)\)
\(\Delta'_{(*)}=m^2-4\)
a)
Để PT ban đầu vô nghiệm thì PT $(*)$ vô nghiệm hoặc có 2 nghiệm âm
PT $(*)$ vô nghiệm \(\Leftrightarrow \Delta'_{(*)}=m^2-4< 0\Leftrightarrow -2< m< 2\)
PT $(*)$ có nghiệm âm: \(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1+t_2=2m< 0\\ t_1t_2=4>0\end{matrix}\right.\Leftrightarrow m< -2\)
Vậy $m\in (-2;2)$ hoặc $m\in (-\infty; -2)$
b)
Để PT ban đầu có 1 nghiệm thì PT $(*)$ có duy nhất nghiệm $t=0$ hoặc có 1 nghiệm $t=0$ và nghiệm còn lại âm.
Mà $0^2-2.m.0+4=4\neq 0$ với mọi $m$ nên PT $(*)$ không thể có nghiệm $t=0$. Kéo theo không tồn tại $m$ để PT ban đầu có nghiệm duy nhất.
c) Để PT ban đầu có 2 nghiệm thì PT $(*)$ có 1 nghiệm dương, 1 nghiệm âm (2 nghiệm trái dấu)
\(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1t_2=4< 0\end{matrix}\right.\) (vô lý)
Do đó không tồn tại $m$ để PT ban đầu có 2 nghiệm
d)
Để PT ban đầu có 3 nghiệm thì PT $(*)$ phải có 2 nghiệm: $1$ nghiệm dương và một nghiệm $t=0$. Như phần b ta đã chỉ ra $(*)$ không thể có nghiệm $t=0$. Do đó không tồn tại $m$ để PT ban đầu có 3 nghiệm.
e)
Để PT ban đầu có 4 nghiệm phân biệt thì $(*)$ phải có 2 nghiệm dương phân biệt
\(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1+t_2=2m>0\\ t_1t_2=4>0\end{matrix}\right.\Leftrightarrow m>2\)
PT ban đầu có 4 nghiệm \(x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_3=-\sqrt{t_2}\)
Để \(x_1^4+x_2^4+x_3^4+x_4^4=32\)
\(\Leftrightarrow 2t_1^2+2t_2^2=32\Leftrightarrow t_1^2+t_2^2=16\)
\(\Leftrightarrow (t_1+t_2)^2-2t_1t_2=16\Leftrightarrow 4m^2-2.4=16\)
\(\Leftrightarrow m^2=6\Rightarrow m=\sqrt{6}\) (do $m>2$)
Vậy.........