K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

1.(x+3)^2=9(2x-1)^2

=>(x+3)^2-9(2x-1)^2=0

=>(x+3)^2-[3(2x-1)]^2=0

=>(x+3)^2-(6x-3)^2=0

=>(x+3-6x+3).(x+3+6x-3)=0

=>(-5x+6).7x=0

=> 2 TH

*-5x+6=0

=>-5x=0-6

=>-5x=-6

=>x=6/5

*7x=0

=>x=0

vậy x=6/5 hoặc x=0

2) 8^3-50x=0

=>x.(8x^2-50)=0

=>8x^2-50=0

=>8x^2=50

=x^2=50/8

=>x^2=25/4

=>x=5/2

vậy x=5/2

29 tháng 10 2020

8x3 - 50x = 0

⇔ 2x( 4x2 - 25 ) = 0

⇔ 2x( 2x - 5 )( 2x + 5 ) = 0

⇔ 2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0

⇔ x = 0 hoặc x = ±5/2

( x + 3 )2 = 9( 2x - 1 )2

⇔ ( x + 3 )2 - 32( 2x - 1 )2 = 0

⇔ ( x + 3 )2 - [ 3( 2x - 1 ) ]2 = 0

⇔ ( x + 3 )2 - ( 6x - 3 )2 = 0

⇔ ( x + 3 - 6x + 3 )( x + 3 + 6x - 3 ) = 0

⇔ ( -5x + 6 ).7x = 0

⇔ -5x + 6 = 0 hoặc 7x = 0

⇔ x = 6/5 hoặc x = 0

29 tháng 10 2020

\(8x^3-50x=0\)   

\(2x\left(4x^2-25\right)=0\)   

\(\orbr{\begin{cases}2x=0\\4x^2-25=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x^2=\frac{25}{4}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{25}{4}}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\frac{5}{2}\end{cases}}\)   

\(\left(x+3\right)^2=9\left(2x-1\right)^2\)   

\(x^2+6x+9=9\left(4x^2-4x+1\right)\)   

\(x^2+6x+9=36x^2-36x+9\)    

\(0=36x^2-36x+9-x^2-6x-9\)   

\(0=35x^2-42x\)   

\(35x^2-42x=0\)   

\(7x\left(5x-6\right)=0\)   

\(\orbr{\begin{cases}7x=0\\5x-6=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\frac{6}{5}\end{cases}}\)

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

8 tháng 12 2019

\(2x\left(x^2-25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\left(2x+1\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)

8 tháng 12 2019

\(9\left(3x-2\right)-x\left(2-3x\right)=0\)

\(9\left(3x-2\right)+x\left(3x-2\right)=0\)

\(\left(9+x\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)

\(\left(2x-1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

25 tháng 10 2022

a: =>(2x-1-x-3)(2x-1+x+3)=0

=>(x-4)(3x+2)=0

=>x=-2/3 hoặc x=4

b: =>-5x^2+9x=0

=>-x(5x-9)=0

=>x=0 hoặc x=9/5

c: =>2x^2-10x-x+5=0

=>(x-5)(2x-1)=0

=>x=1/2 hoặc x=5

e: =>2x(x^2-25)=0

=>x(x-5)(x+5)=0

hay \(x\in\left\{0;5;-5\right\}\)

27 tháng 10 2019

a) Ta có: \(\left(2x-1\right)^2-25=0\)

hay \(\left(2x-1\right)^2-5^2=0\)

\(\Rightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Rightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

b) Ta có: \(8x^2-50x=0\Rightarrow x\left(8x-50\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\8x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\8x=50\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{50}{8}=\frac{25}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{25}{4}\right\}\)

c) Ta có: \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left[\left(x^2+2x+7\right)+2\left(x+2\right)-5\right]=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)(1)

Ta có: \(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2\)

\(\left(x+2\right)^2\ge0\forall x\)

nên \(\left(x+2\right)^2+2\ge2>0\forall x\)

nên \(x^2+4x+6=0\) là điều vô lý (2)

Từ (1) và (2) suy ra

\(x-2=0\Leftrightarrow x=2\)

Vậy: x=2

Thanks bn

14 tháng 8 2016

a) \(\left(y-1\right)^2=9\)

\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)

\(\Rightarrow x-1=3\Rightarrow x=4\)

\(\Rightarrow x-1=-3\Rightarrow x=-2\)

Vậy: \(x=4\) hoặc \(-2\)

14 tháng 8 2016

\(\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4\right)^2=25\)

\(\Rightarrow\left(x-4\right)^2=5^2=\left(-5\right)^2\)

\(\Rightarrow x-4=5\Rightarrow x=9\)

\(\Rightarrow x-4=-5\Rightarrow x=-1\)

Vậy: \(x=9\) hoặc \(-1\)