Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8x3 - 50x = 0
⇔ 2x( 4x2 - 25 ) = 0
⇔ 2x( 2x - 5 )( 2x + 5 ) = 0
⇔ 2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0
⇔ x = 0 hoặc x = ±5/2
( x + 3 )2 = 9( 2x - 1 )2
⇔ ( x + 3 )2 - 32( 2x - 1 )2 = 0
⇔ ( x + 3 )2 - [ 3( 2x - 1 ) ]2 = 0
⇔ ( x + 3 )2 - ( 6x - 3 )2 = 0
⇔ ( x + 3 - 6x + 3 )( x + 3 + 6x - 3 ) = 0
⇔ ( -5x + 6 ).7x = 0
⇔ -5x + 6 = 0 hoặc 7x = 0
⇔ x = 6/5 hoặc x = 0
\(8x^3-50x=0\)
\(2x\left(4x^2-25\right)=0\)
\(\orbr{\begin{cases}2x=0\\4x^2-25=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^2=\frac{25}{4}\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{25}{4}}\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm\frac{5}{2}\end{cases}}\)
\(\left(x+3\right)^2=9\left(2x-1\right)^2\)
\(x^2+6x+9=9\left(4x^2-4x+1\right)\)
\(x^2+6x+9=36x^2-36x+9\)
\(0=36x^2-36x+9-x^2-6x-9\)
\(0=35x^2-42x\)
\(35x^2-42x=0\)
\(7x\left(5x-6\right)=0\)
\(\orbr{\begin{cases}7x=0\\5x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{6}{5}\end{cases}}\)
a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0
1) x - 3 = 0 ⇔ x = 3
2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5
Vậy tập nghiệm của phương trình là S = {3;-2,5}
b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0
⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0
1) x - 2 = 0 ⇔ x = 2
2) -x + 5 = 0 ⇔ x = 5
Vậy tập nghiệm của phương trình là S = {2;5}
c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.
Vậy tập nghiệm của phương trình là x = 1
d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0
⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0
1) x - 2 = 0 ⇔ x = 2
2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72
Vậy tập nghiệm của phương trình là S = {2;72}
e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0
1) x - 7 = 0 ⇔ x = 7
2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1
Vậy tập nghiệm phương trình là: S= { 7; 1}
f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0
⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0
⇔ x = 3 hoặc x = 1
Vậy tập nghiệm của phương trình là S = {1;3}
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a: =>(2x-1-x-3)(2x-1+x+3)=0
=>(x-4)(3x+2)=0
=>x=-2/3 hoặc x=4
b: =>-5x^2+9x=0
=>-x(5x-9)=0
=>x=0 hoặc x=9/5
c: =>2x^2-10x-x+5=0
=>(x-5)(2x-1)=0
=>x=1/2 hoặc x=5
e: =>2x(x^2-25)=0
=>x(x-5)(x+5)=0
hay \(x\in\left\{0;5;-5\right\}\)
a) Ta có: \(\left(2x-1\right)^2-25=0\)
hay \(\left(2x-1\right)^2-5^2=0\)
\(\Rightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-2\right\}\)
b) Ta có: \(8x^2-50x=0\Rightarrow x\left(8x-50\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\8x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\8x=50\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{50}{8}=\frac{25}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{25}{4}\right\}\)
c) Ta có: \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left[\left(x^2+2x+7\right)+2\left(x+2\right)-5\right]=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)(1)
Ta có: \(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2\)
mà \(\left(x+2\right)^2\ge0\forall x\)
nên \(\left(x+2\right)^2+2\ge2>0\forall x\)
nên \(x^2+4x+6=0\) là điều vô lý (2)
Từ (1) và (2) suy ra
\(x-2=0\Leftrightarrow x=2\)
Vậy: x=2
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
1.(x+3)^2=9(2x-1)^2
=>(x+3)^2-9(2x-1)^2=0
=>(x+3)^2-[3(2x-1)]^2=0
=>(x+3)^2-(6x-3)^2=0
=>(x+3-6x+3).(x+3+6x-3)=0
=>(-5x+6).7x=0
=> 2 TH
*-5x+6=0
=>-5x=0-6
=>-5x=-6
=>x=6/5
*7x=0
=>x=0
vậy x=6/5 hoặc x=0
2) 8^3-50x=0
=>x.(8x^2-50)=0
=>8x^2-50=0
=>8x^2=50
=x^2=50/8
=>x^2=25/4
=>x=5/2
vậy x=5/2