Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-8x+20\)
\(=x^2-2.x.4+16+4\)
\(=\left(x-4\right)^2+4\)
Có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+4>0\)
Hay:.............
b) \(x^2+11\)
Có: \(x^2\ge0\Rightarrow x^2+11>0\)
Hay:.............
c) \(4x^2-12x+11\)
\(=4\left(x^2-3x+\frac{11}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{2}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+2>0\)
d) \(x^2+5y^2+2x+6y+34\)
\(=x^2+2.x.1+1+y^2+4y^2+2.y.3+9+24\)
\(=\left(x^2+2.x.1+1\right)+\left(y^2+2.y.3+9\right)+4y^2+24\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24\)
Ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\\\left(2y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24>0\)
f) \(x^2-2x+y^2+4y+6\)
\(=x^2-2.x.1+1+y^2+2.y.2+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)
này mình có vài câu không làm được, xin lỗi bạn nha
\(b,16x^2-8x+1=\left(4x-1\right)^2\\ c,4x^2+12xy+9y^2=\left(2x+3y\right)^2\\ e,=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\\ =\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\\ =\left[\left(x+1\right)+\left(y+1\right)\right]^2=\left(x+y+2\right)^2\\ g,=x^2-2x\left(y+2\right)+\left(x+2\right)^2=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\\ h,=\left[x+\left(y+1\right)\right]^2=\left(x+y+1\right)^2\)
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
3) 5x2 + y2 -4xy - 2y + 8x + 2013
= ( 4x2 + y2 -4xy -2y + 8x ) + x2 + 2013
= ( 2x - y +1)2 + x2 +2013
Vì ( 2x-y+1)2 \(\ge\)0 \(\forall x,y\); x2 \(\ge\)0\(\forall x\)
=> (2x - y+1)2 + x2 \(\ge\)0
=> ( 2x-y +1)2 +x2 + 2013\(\ge\)0
hay A \(\ge0\)\(\forall x,y\)=> A ko âm
1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)
\(=x^3+27-x^3-54\)
=-27
2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)
1) \(x^2-8x+20=\left(x^2-8x+16\right)+4=\left(x-4\right)^2+4>0\forall x\)
(do \(\left(x-4\right)^2\ge0\forall x\)
2) \(4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2>0\forall x\)
(do \(\left(2x-3\right)^2\ge0\forall x\))
3) \(x^2-2x+y^2+4y+6=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x;y\)
(do ....)
4) \(\left(15x-1\right)^2+3\left(7x+3\right)\left(x+1\right)-\left(x^2-73\right)\)
\(=225x^2-30x+1+3\left(7x^2+10x+3\right)-x^2+73\)
\(=225x^2-30x+83+21x^2+30x-x^2\)
\(=245x^2+83>0\forall x\)