K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2024

Bài 1:

a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)

     \(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)

     \(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)

     \(x=-\) \(\dfrac{49}{56}\)

Vậy \(x=-\dfrac{49}{56}\)

b; 6 - \(x\) = - \(\dfrac{3}{4}\)

         \(x\) = 6 + \(\dfrac{3}{4}\)

         \(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)

         \(x=\dfrac{27}{4}\)

Vậy \(x=\dfrac{27}{4}\) 

c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)

              \(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)

              \(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)

               \(x=\dfrac{19}{20}\)

Vậy \(x=\dfrac{19}{20}\) 

27 tháng 9 2024

      Bài 1:

d; - 6 - \(x\) = - \(\dfrac{3}{5}\)

      \(x\)   = - 6 + \(\dfrac{3}{5}\)

       \(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)

       \(x=-\dfrac{27}{5}\)

Vậy \(x=-\dfrac{27}{5}\)

e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)

             \(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)

             \(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)

              \(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)

               \(x=\dfrac{22}{21}\)

Vậy \(x=\dfrac{22}{21}\) 

f; - 8 - \(x\) =  - \(\dfrac{5}{3}\)

          \(x\) = \(-\dfrac{5}{3}\) + 8

         \(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)

         \(x\) = \(\dfrac{-19}{3}\)

Vậy \(x=-\dfrac{19}{3}\) 

 

            

 

17 tháng 2 2020

\(/x-\frac{1}{2}/=\frac{1}{3}\\ =>\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=-\frac{1}{3}\end{cases}}\\ =>\orbr{\begin{cases}x=\frac{1}{3}+\frac{1}{2}\\x=-\frac{1}{3}+\frac{1}{2}\end{cases}}\\ =>\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}\)

\(a,|x-\frac{1}{2}|=\frac{1}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=-\frac{1}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}}\)

\(b,\frac{14}{15}:\frac{9}{10}=x:\frac{3}{7}\)

\(\frac{28}{27}=x:\frac{3}{7}\)

\(x=\frac{4}{9}\)

12 tháng 4 2018

E = x^(4)*y^(4)+x^(5)*y^(5)+x^(6)*y^(6)+x^(7)*y^(7)+x^(8)*y^(8)+x^(9)*y^(9)+x^(10)*y^(10) tại x=-1, y=1 nha

26 tháng 11 2021

\(x^2=1\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(x^2=3\Rightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\sqrt{3}\end{matrix}\right.\)

\(x^2=5\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\end{matrix}\right.\Rightarrow x=-\sqrt{5}\left(vì.x< 0\right)\)

\(x^2=7\Rightarrow\left[{}\begin{matrix}x=-\sqrt{7}\\x=\sqrt{7}\end{matrix}\right.\Rightarrow x=-\sqrt{7}\left(vì.x< 0\right)\)

\(x^2=9\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

\(\left(x-2\right)^2=2\Rightarrow\left[{}\begin{matrix}x-2=-\sqrt{2}\\x-2=\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{2}\\x=2+\sqrt{2}\end{matrix}\right.\)

\(\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x-2=-2\\x-2=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\left(x-6\right)^2=6\Rightarrow\left[{}\begin{matrix}x-6=-\sqrt{6}\\x-6=\sqrt{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6-\sqrt{6}\\x=6+\sqrt{6}\end{matrix}\right.\)

\(\left(x-8\right)^2=8\Rightarrow\left[{}\begin{matrix}x-8=-2\sqrt{2}\\x-8=2\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8-2\sqrt{2}\\x=2+2\sqrt{2}\end{matrix}\right.\)

\(\left(x-10\right)^2=10\Rightarrow\left[{}\begin{matrix}x-10=-\sqrt{10}\\x-10=\sqrt{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-\sqrt{10}\\x=10+\sqrt{10}\end{matrix}\right.\)

\(\left(x-\sqrt{3}\right)^2=3\Rightarrow\left[{}\begin{matrix}x-\sqrt{3}=-\sqrt{3}\\x-\sqrt{3}=\sqrt{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{3}\end{matrix}\right.\)

\(\left(x-\sqrt{5}\right)^2=5\Rightarrow\left[{}\begin{matrix}x-\sqrt{5}=-\sqrt{5}\\x-\sqrt{5}=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{5}\end{matrix}\right.\)

3 tháng 8 2021

4,  Q = |x+\(\frac{1}{5}\) | -x +\(\frac{4}{7}\)

 xét x \(\ge\) \(-\frac{1}{5}\)

 Ta Có  Q = |x+\(\frac{1}{5}\) | -x + \(\frac{4}{7}\)  = x+\(\frac{1}{5}\) - x +\(\frac{4}{7}\)\(\frac{27}{35}\)   (1)

xét x \(< -\frac{1}{5}\)

Ta có Q = | x +\(\frac{1}{5}\) | - x + \(\frac{4}{7}\) = -x - \(\frac{1}{5}\) - x + \(\frac{4}{7}\) = -2x  + \(\frac{13}{35}\)

với x \(< -\frac{1}{5}\) 

=> -2x \(>\) \(\frac{2}{5}\) 

=> -2x + \(\frac{13}{35}\) \(>\frac{27}{35}\) (2)

Từ (1) và (2) => MinQ = \(\frac{27}{35}\) khi \(x\ge-\frac{1}{5}\)

5 ,  D = |x| + |8-x| 

D = |x| + |8-x| \(\ge\) |x+8-x|  = |8| = 8

Dấu ''='' xảy ra khi   x(8-x) \(\ge\) 0  <=> 0\(\le\)x\(\le\) 8 

Vậy MinD = 8 khi \(0\le x\le8\) 

6,L=  |x - 2012| + |2011 - x| 

L = |x-2012| + |2011-x| \(\ge\) | x-2012 + 2011 - x |  = |-1| = 1 

Dấu ''= '' xảy ra khi ( x-2012)(2011-x) \(\ge\) 0  

3 tháng 8 2021

làm nốt câu 6 nãy ấn nhầm 

<=> 2011\(\le\) x \(\le\) 2012

Vậy MinL = 1 khi \(2011\le x\le2012\) 

7 , E = | x- \(\frac{2006}{2007}\) | + |x-1| 

Ta có :

E = |x-\(\frac{2006}{2007}\) | + |1-x| 

E = | x - \(\frac{2006}{2007}\) | + |1-x| \(\ge\) | x - \(\frac{2006}{2007}\) + 1 - x |  = \(\frac{1}{2007}\) 

Dấu ''='' xảy ra khi (x- \(\frac{2006}{2007}\) ) ( 1-x ) \(\ge0\) <=>  \(\frac{2006}{2007}\le x\le1\) 

Vậy MinE = \(\frac{1}{2007}\) khi \(\frac{2006}{2007}\le x\le1\) 

8 ,F = | x -\(\frac{1}{4}\) | + | \(x-\frac{3}{4}\) | 

Ta có :

F  = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\)   - x | 

F  = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) -x | \(\ge\) | x - \(\frac{1}{4}\) + \(\frac{3}{4}\) -x  |  = \(\frac{1}{2}\) 

Dấu ''='' xảy ra khi ( x-\(\frac{1}{4}\) ) ( \(\frac{3}{4}-x\) ) \(\ge\) 0    <=>  \(\frac{1}{4}\le x\le\frac{3}{4}\) 

Vậy MinF = \(\frac{1}{2}\) khi \(\frac{1}{4}\le x\le\frac{3}{4}\)