Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) |x - 3/2| + |2,5 - x| = 0
=> |x - 3/2| = 0 và |2,5 - x| = 0
=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).
Vậy x rỗng.
a)t có /x-2/ lớn hơn hoặc bằng 0
/x-4/lớn hơn hoặc bằng 0
suy ra /x-2/+/x-4/=A lớn hơn hoặc bằng 0
vậy giá trị nhỏ nhất cua A là =0
khi đó ;/x-2/=0 và/x-4/=0
suy ra x-2=0 vàx-4=0
vậy x=2 vàx=4
kết luận a có giá trị nhỏ nhất bằng 0 khi x=2 và x=4
b)tương tự
c)ta có /2x+4.5/ lớn hơn hoac =0
/x-2.7/lớn hơn hoac = 0
mà /2x+4.5/+/x-2.7/=0
từ 3 dieu tren suy ra khi dó
/2x+4.5/=0 và /x-2.7/=0
suy ra x=-2.25 và x=2.7
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
- Với x-2=-(x-2)
=>x-2=-x+2
=>x=2
- Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
- Với 2x+3=-(5x-1)
=>2x+3=-5x+1
=>x=-2/7 (loại)
- Với 2x+3=5x-1
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
ta có với mọi x: /x+5/ lớn hơn hoặc bằng 0
suy ra ; -/x+5/ bé hơn hoặc bằng 0
suy ra ; 3.5-/x+5/ bé hơn hoặc bằng 3.5 =15
suy ra 1/ 15-/x+5/ lớn hơn hoặc bằng 1/15
Dấu bằng xảy ra khi và chỉ khi /x+5/=0
suy ra x=-5
vậy E min =1/15 khi và chỉ khi x=-5
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)