Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)
\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)
\(\Delta'=m^2-2m+1-m^2-m\)
\(\Delta'=-3m+1\)
để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)
b) \(3x^2+mx+m^2=0\)
có \(\Delta=m^2-4.3.m^2\)
\(\Delta=m^2-12m^2=-11m^2\)
để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)
c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)
\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)
\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)
để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)
\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)
\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)
\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )
\(\Leftrightarrow m>0\)
vậy \(m>0\) và \(m\ne1\)
a/ Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(-3\right)^2-4.\left(2m-1\right)>0\)
\(\Leftrightarrow13-8m>0\)
\(\Leftrightarrow m< \frac{13}{8}\)
b/ Để phương trình có nghiệm kép thì
\(\Delta=1^2-4.m=0\)
\(\Leftrightarrow m=0,25\)
Nghiệm kép đó là: \(x=-0,5\)
a, Thay m=1 vào phương trình, ta được: x2-3x+2=0
<=> x2-2x-x+2=0
<=> x(x-2) - (x-2)=0
<=> (x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy phương trình có tập nghiệm S={1;2}
b, Với m khác 0, phương trình trở thành phương trình bậc 2 có:
Delta = (2m+1)2 - 4m(m+1)
= 4m2+4m+1 - 4m2-4m
= 1>0
Vậy phương trình luôn có 2 nghiệm phân biệt với m khác 0.
c, Vì phương trình có delta>0 với mọi giá trị của m khác 0 nên không có giá trị nào của m để phương trình có nghiệm kép.
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m < \(\dfrac{1}{2}\)
Phương trình vô nghiệm khi m > \(\dfrac{1}{2}\)
Phương trình có nghiệm kép khi m = \(\dfrac{1}{2}\).
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m <
Phương trình vô nghiệm khi m >
Phương trình có nghiệm kép khi m = .
a) \(\Delta=m^2-8\)
pt có ng kép \(\Leftrightarrow\Delta=0\Leftrightarrow m^2-8=0\Leftrightarrow\left[{}\begin{matrix}m=-\sqrt{8}\left(N\right)\\m=\sqrt{8}\left(N\right)\end{matrix}\right.\)
Kl: m= +-căn 8
b) \(\Delta'=\left(m-4\right)^2-\left(m^2+m+3\right)=-9m+13\)
pt có ng kép \(\Leftrightarrow\Delta=0\Leftrightarrow-9m+13=0\Leftrightarrow m=\dfrac{13}{9}\left(N\right)\)
Kl: m= 13/9
c) \(\Delta'=\left(-2\right)^2-4m^2=-4m^2+4\)
\(\Leftrightarrow\Delta=0\Leftrightarrow-4m^2+4=0\Leftrightarrow\left[{}\begin{matrix}m=-1\left(N\right)\\m=1\left(N\right)\end{matrix}\right.\)
Kl : m= +-1