Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...

1/ \(4\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮3\)
\(\Rightarrow2a-b⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮9\)
\(\Rightarrow3b^2⋮9\)
\(\Rightarrow b⋮3\)
\(\Rightarrow a⋮3\)

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)
\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)
\(\Rightarrow P\le\frac{3}{4}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

Hehe
1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b
=> a^2- 2ab+ b^2>= 0 với mọi a,b
=> a^2+2ab+ b^2>= 4ab với a,b>0
=> (a+b)^2> 4ab với a,b>0
=> a+b>= \(2\sqrt{ab}\)
Dấu = xảy ra <=> a-b=0 <=> a= b
Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D
2) Chắc thiếu đề :D