K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Ta có:

\(\widehat{A}=3\cdot\widehat{C}\\ \widehat{B}=4\cdot\widehat{C}\\ \widehat{D}=2\cdot\widehat{C}\\ \Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=3\cdot\widehat{C}+4\cdot\widehat{C}+\widehat{C}+2\cdot\widehat{C}\\ \Leftrightarrow10\cdot\widehat{C}=360^o\\ \Leftrightarrow\widehat{C}=36^o\\ \Rightarrow\widehat{A}=3\cdot\widehat{C}=3\cdot36=108^o\\ \widehat{B}=4\cdot\widehat{C}=4\cdot36^o=144^o\\ \widehat{D}=2\cdot\widehat{C}=2\cdot36^o=72^o\)

Vậy \(\widehat{A}=108^o;\widehat{B}=144^o;\widehat{C}=36^o;\widehat{D}=72^o\)

1: Đặt góc A=a; góc B=b; góc C=c; góc D=d

Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360

Áp dụng tính chất của DTSBN, ta được:

a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36

=>a=36; b=72; c=108; d=144

2:

góc C+góc D=360-130-105=230-105=125

góc C-góc D=25 độ

=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ

3:

góc B=360-57-110-75=118 độ

số đo góc ngoài tại B là:

180-118=62 độ

16 tháng 7 2023

a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.

Vì AB//CD, ta có góc ACD = góc BAD.

Vậy số đo góc A là 120 độ.

b) Gọi góc BCD là x độ.

Theo giả thiết, góc B phần góc D = 4/5, ta có:

góc B = (4/5) * góc D

= (4/5) * 60

= 48 độ.

Vì AB//CD, ta có góc BCD = góc BAD.

Vậy góc BAD = góc BCD = x độ.

Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.

Ta có: góc A + góc B + góc C + góc D = 360 độ.

Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:

120 + 48 + góc C + 60 = 360

góc C = 360 - 120 - 48 - 60 = 132 độ.

Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.

* Ib = bài 4

a) Ta thấy : A + B + C + D = 360°

Tự áp dụng tính chất dãy tỉ số bằng nhau ta có : 

A = 144° 

B = 108° 

C = 72° 

D = 36° 

b) Vì DE , CE là phân giác ADC và ACD 

=> EDC = ADE = 18° 

=> BCE = ECD = 36° 

Xét ∆DEC ta có : 

EDC + DEC + ECD = 180° 

=> DEC = 126° 

Ta có : góc ngoài tại đỉnh C

=> 180° -  BCD = 108° 

Góc ngoài tại đỉnh D 

=> 180° - ADC = 144° 

Mà DF , CF là phân giác ngoài góc C , D 

=> CDF = 72° 

=> DCF = 54° 

Xét ∆CDF ta có : 

CDF + DFC + DCF = 180° 

=> DFC = 44° 

7 tháng 7 2016

giúp mk với

Bài 1) 

Ta có : A + B + C + D = 360 độ

=> A + B = 140 độ

Ta có :

A = \(\frac{140+40}{2}\)= 90 độ

=> B = 90 - 40 = 50 độ

4 tháng 7 2019

Bài 1 :

Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Rightarrow\widehat{A}+\widehat{B}+120^o+100^o=360^o\)

\(\Rightarrow\widehat{A}+\widehat{B}+220^o=360^o\)

\(\Rightarrow\widehat{A}+\widehat{B}=140^o\)

Mà : \(\widehat{A}-\widehat{B}=40^o\)

\(\Rightarrow\widehat{A}+\widehat{A}+\widehat{B}-\widehat{B}=140^o+40^o\)

\(\Rightarrow2\widehat{A}=180^o\Leftrightarrow\widehat{A}=90^o\)

\(\Leftrightarrow\widehat{B}=140^o-\widehat{A}=140^o-90^o=50^o\)

\(KL:\widehat{A}=90^o;\widehat{B}=50^o\)

2 tháng 9 2020

1. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí )

mà 4 góc đó bằng nhau 

=> ^A = ^B = ^C = ^D = 3600/4 = 900

2. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí ) (1)

mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5

=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)

Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+​​\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)

=> ^A = 300

     ^B = 300.2 = 600

     ^C = 300.4 = 1200

     ^D = 300.5 = 1500

2 tháng 9 2020

Xét tứ giác ABCD có các góc bằng nhau

=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)

Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)

\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)

Bài 2: 

Xét tứ giác ABCD 

=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5

\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Theo tính chất dãy tỉ số bằng nhau

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)

Do đó 

\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)

\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)

\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)

\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)

Vậy.........

27 tháng 6 2019

ta có    góc A =góc B-200

            góc C= x góc A=3 ( góc B-200)

            góc D=  góc C+200=  3( góc B -200)+200

mà góc A+góc B+góc C+ góc D=3600

=> góc B-200   +góc B +3x góc B   -400  +3x góc B -600 =3600

   8 góc B   =4800

góc B=600

=> góc A=400

  góc C =1200

 góc D=1400

b)  tứ giác ABCD có    góc A+góc D =1800   => AB//DC ( tổng 2 góc trong cùng phía =1800)

=> ABCD là hình thang

                                              

24 tháng 9 2021

Cho tứ giác ABCD, biết :

a)     Tính các góc của tứ giác ABCD

b)    Tứ giác ABCD có phải  hình thang không? Vì sao?

26 tháng 7 2021

a/ Gọi x là số đo góc A tứ giác ABCD.(x>0)

Số đo góc B là x+20

Số đo góc C là 3x

Số đo góc D là 3x+20

Vì tổng số đo góc trong tứ giác là 360onên ta có phương trình:

x+x+20+3x+3x+20=360

<=>8x = 320

<=> x=40(nhận)

Vậy góc A=40O

  GÓC B=60O

GÓC C=120O

GÓC D = 140O

B/ Ta có: góc A + góc D = 40o+140o=180o

Mà 2 góc này ở vị trí trong cùng phía 

Nên AB//CD 

=> Tứ giác ABCD là hình thang