Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a+b+c=abc/1000
<=>abc.(a+b+c)=1.1000=1000
Nhận thấy abc là ước có 3 chữ số của 1000
=>abc E {100;125;200;250;500}
+)abc=100=>a+b+c=10( loại)
+)abc=125=>a+b+c=8( nhận)
+)abc=200=>a+b+c=5( loại)
+)abc=250=>a+b+c=4( loại)
+)abc=500=>a+b+c=2( loại)
Vậy abc=125 và a=1;b=2;c=5
tham khảo
\(A=\overline{abc}-\left(a+b+c\right)\\ =100a+10b_{ }+c-\left(a+b+c\right)\\ =99a+9b\)Vì 99 và 9 chia hết cho 9 nên 99a+99b chia hết cho 9 hay A chia hết cho 9
*\(2\overline{xy}+1=n^2\left(1\right)\\ 3\overline{xy+1=m^2\left(2\right)\left(1\right)=>2\overline{xy}chia}h\text{ết}cho8=>\overline{xy}chiah\text{ết}cho4\\ \left(2\right)=>3\overline{xy}chiah\text{ết}cho8,\left(8;3\right)=1=>\overline{xy}chiah\text{ết}cho8\)
*\(\left(1\right)+\left(2\right)\\ =>5\overline{xy}+2=m^2+n^2\\ VPchia5d\text{ư}2=>m^2+n^2chia5d\text{ư}2=>m^2v\text{à}n^2chia5d\text{ư}1\\ =>\overline{xy}chiah\text{ết}cho5\\ \left(8;5\right)=1=>\overline{xy}\)
\(=>\overline{xy}chiah\text{ết}cho40\\ =>\overline{xy}\left(40;80\right)=>\overline{xy}=40\)
a, ab + bc + ca = abc
ab + bc + ca = a00 + bc
ab + ca = a00
Vì ab và ca là số có hai chữ số nên tổng của chúng ko quá 200 => a = 1
Vì b + a có tận cùng là 0 => b = 9
c + a + nhớ 1 có tận cùng là 0 => c = 8
Vậy a=1,b=9,c=8
b, abc + ab + a = 874
Đổi chỗ các chữ số vào 1 cột, ta được:
abc aaa
+ +
ab => bb
+ +
a c
____ ______
874 874
Do bb + c < 10 nên 847 \(\ge\overline{aaa}\) > 874 - 110 = 764 => \(\overline{aaa}=777\)
=> bb + c = 874 - 777 = 97
Mà \(97\ge\overline{bb}>97-10=87\Rightarrow\overline{bb}=88\)
=> c = 97 - 88 = 9
Vậy a = 7, b = 8, c = 9
Ta có \(\frac{ab}{bc}=\frac{b}{c}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đucợ
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{10a}{10b}=\frac{a}{b}\)( ko hiểu sao có 10a , 10b hỏi mình )
=>\(b^2=a.c\)( ko hiểu đoạn này cx hỏi mình)
Do ab nguyên tố nên b lẻ khác 5, mà b là chữ số ⇒b ∈ 1;3;7;9
+ Với b = 1 thì \(1^2\) = a.c => a = c = 1, loại vì a;b;c khác nhau
+ Với b = 3 thì \(3^2\) = a.c = 9, ta chọn được giá trị a = 1; c = 9 để ab = 13 thỏa mãn là số nguyên tố
+ Với b = 7 thì \(7^2\)= a.c = 49, ta chỉ chọn đuơc cặp giá trị a = c = 7 vì a;c là chữ số, loại vì a;c khác nhau
+ Với b = 9 thì \(9^2\)= a.c = 81, ta cũng chì chọn được cặp giá trị a = c = 9 vì a;c là chữ số, loại vì a;c khác nhau
Vậy abc = 139
* 2xy + 1 =n2(1)
3xy+1=m2(2)
(1) => 2xy chia hết cho 8 => xy chia hết cho 4
(2)=>3xy chia hết cho 8 mà (3;8)=1 => xy chia hết cho 8
*(1)+(2)
=> 5xy +2=m2+n2
VP chia 5 dư 2 => m2+n2 chia 5 dư 2 => m2 và n2 chia 5 dư 1
=>xy chia hết cho 5
(8;5)=1
=>xy chia hết cho 40
Giup cai j!!??