Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo công thức trung điểm:
\(\left\{{}\begin{matrix}x_M=2x_B-x_A=5\\y_M=2y_B-y_A=6\end{matrix}\right.\) \(\Rightarrow M\left(5;6\right)\)
Để B là trung điểm của đoạn thẳng AM, ta cần tìm tọa độ của điểm M.
Theo định nghĩa, trung điểm của một đoạn thẳng là điểm nằm ở giữa hai đầu mút của đoạn đó. Ta áp dụng công thức trung điểm để tìm tọa độ của M.
Công thức trung điểm: M(xM, yM) là trung điểm của đoạn AB <=> (xM, yM) = ((xA + xB)/2, (yA + yB)/2).
Ứng với A(1; -2) và B(3; 2): xM = (1 + 3)/2 = 2, yM = (-2 + 2)/2 = 0.
Vậy tọa độ của điểm M là M(2; 0).
Đáp án đúng là: B. M(2; 0).
a) Gọi G(xG;yG)
xG=\(\dfrac{X_A+X_B+X_C}{3}=\dfrac{3-2+1}{3}\)=\(\dfrac{2}{3}\)
yG=\(\dfrac{Y_A+Y_B+Y_C}{3}=\dfrac{3+4+5}{3}=4\)
⇒G(\(\dfrac{2}{3};4\))
Hok nhanh phết, chưa j đã đến phần toạ độ vecto r
1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)
\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)
\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)
2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)
3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)
\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)
\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)
Câu 4 tương tự
Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx
1.
Do tung độ của 2 vecto cùng dấu nên 2 vecto cùng hướng khi tọa độ của chúng tương ứng tỉ lệ, hay:
\(\dfrac{m}{1}=\dfrac{6}{2}\Rightarrow m=3\)
Do \(3\in\left(2;4\right)\) nên B là đáp án đúng
2.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;2\right)\\\overrightarrow{AC}=\left(-6;m-2\right)\end{matrix}\right.\)
3 điểm A,B,C thẳng hàng khi hai vecto trên cùng phương hay tọa độ của chúng tương ứng tỉ lệ:
\(\dfrac{-6}{2}=\dfrac{m-2}{2}\Rightarrow m-2=-6\Rightarrow m=-4\in\left(-5;-2\right)\)