Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
1) b)
Phương trình trên tương đương
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)
ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)
\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)
\(-2=x^3+4x^2-2x^2-8x-33x-132\)
\(x^3+2x^2-41x-130=0\)
\(x^3+5x^2-3x^2-15x-26x-130=0\)
\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)
\(\left(x^2-3x-26\right)\left(x+5\right)=0\)
\(\Rightarrow x=-5\)(Loại)
\(x^2-3x-26=0\)
Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác
\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)
\(x_1=\dfrac{3-\sqrt{113}}{2}\)
\(x_2=\dfrac{3+\sqrt{113}}{2}\)
Phương trình có 2 nghiệm trên
5) 0<a<b, ta có: a<b
<=> a.a<a.b
<=>a2<a.b
<=>\(a< \sqrt{ab}\)(1)
- BĐT Cauchy:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)
\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)
Dấu = xảy ra khi a=b=0 mà 0<a<b
=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)
- 0<a<b, ta có: a<b<=> a+b<b+b
\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)
Từ (1), (2), (3), ta có đpcm
Bài 3:
Ta có: \(a^2+b^2+c^2=3\ge ab+bc+ca\) ( tự cm bđt nha )
Áp dụng bất đẳng thức Schwarz ta có:
\(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}=\dfrac{a^4}{ab+bc}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Dấu " = " khi a = b = c = 1
Bài 4:
Ta có: \(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
( BĐT AM - GM )
Tương tự \(\Rightarrow\dfrac{b^3}{c^2+a^2}\ge b-\dfrac{c}{2}\)
\(\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\)
\(\Rightarrow VT\ge\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{2}\)
Dấu " = " khi a = b = c
Tiếp sức cho Tú đệ
Bài 1: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\dfrac{a^3+b^3}{ab}\ge\dfrac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge VP."="\Leftrightarrow a=b=c\)
Bài 2: Holder:
\(\left(\dfrac{a^4}{bc^2}+\dfrac{b^4}{ca^2}+\dfrac{c^4}{ab^2}\right)\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\left(c+a+b\right)\ge\left(a+b+c\right)^3\)
Cần chứng minh \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)
AM-GM: \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}\cdot\dfrac{ca}{b}}=2c\)
Tương tự rồi cộng theo vế:
\("=" \Leftrightarrow a=b=c\)
3.
\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
áp dụng bất đẳng thức cosi
+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)
......
tương tự với 2 cái sau
Bài 1:
Gọi số thứ nhất là x (x \(\in\) R)
Gọi số thứ hai là 2x
Theo bài ra, ta có: hiệu của hai số là 22
=> x - 2x = 22
=> -x = 22
=> x = -22
hay 2x - x = 22 => x = 22
Vì số thứ hai gấp đôi số thứ nhất và hai số phải là số dương nên số thứ hai là 2.22 = 44.
Vậy số thứ nhất là 22, số thứ hai là 44.
Bài 4:
Gọi số học sinh lớp 9A và 9B lần lượt là x và y (x>0) (y>0)
Vì tổng số học sinh mỗi lớp là 80 học sinh nên ta có pt : x + y = 80 (h/s) (1)
Vì mỗi em lớp 9A góp 2 quyển và mỗi em 9B góp 3 quyển nên cả hai lớp góp được 198 quyển, nên ta có pt:
2x + 3y = 198 (2)
Từ (1) và (2), ta có hệ phương trình :
x + y= 802
x + 3y = 198
Giải hệ ta được số học sinh lớp 9a là 42 học sinh; 9b là 38 học sinh.
bài 2)
xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)
\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )
\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )
=> đpcm
Câu 4:
\(\overrightarrow{AB}=\left(-6;-2\right)\)
\(\overrightarrow{AH}=\left(m+1;m+1\right)\)
Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)
=>1/-6=1/-2(loại)
Áp dụng BĐT AM-GM ta có:
\(ab\le\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{2}{2ab}\)
\(\ge\dfrac{\left(1+1\right)^2}{a^2+b^2+2ab}+\dfrac{2}{2ab}\)
\(\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{2}{2\cdot\dfrac{1}{4}}=4+\dfrac{2}{\dfrac{1}{2}}=8\)
Xảy ra khi \(a=b=\dfrac{1}{2}\)
A, B, M thẳng hàng khi \(\overrightarrow{AM}=k\overrightarrow{AB}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=k\\2=k.7\end{matrix}\right.\Rightarrow x=\dfrac{23}{7}\Rightarrow M\left(\dfrac{23}{7};0\right)\Rightarrow D\)