K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

23 tháng 10 2021

Câu 48: B

Câu 49: C

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

17 tháng 8 2016

a) Hàm số đồng biến khi (2m+3) > 0 => m > -3/2

 Hs nghịch biến khi (2m+3) < 0 => m < -3/2

b) , c , d tương tự

22 tháng 11 2023

loading...  loading...  loading...  

22 tháng 11 2023

tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá

AH
Akai Haruma
Giáo viên
2 tháng 12 2021

D sai, vì hệ số góc $a=1>0$, khi $x$ tăng (giảm) thì $y$ tương ứng tăng (giảm) nên hàm đồng biến trên $R$

NV
2 tháng 12 2021

D là khẳng định sai

24 tháng 10 2021

a: m>1

 

24 tháng 10 2021

a. m>1

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a)

Hình 37a: Bề lõm hướng lên trên nên a>0

Hình 37b: Bề lõm xuống nên a<0

b)

Hình 37a: Đỉnh là (1;-1), trục đối xứng x=1

Hình 37b: Đỉnh là (1;4), trục đối xứng x=1

c)

Hình 37a: Hàm số đồng biến trên \(\left( {1; + \infty } \right)\)

Hình 37b: Hàm số đồng biến trên \(\left( { - \infty ;1} \right)\)

d)

Hình 37a: Hàm số nghịch biến trên \(\left( { - \infty ;1} \right)\)

Hình 37b: Hàm số nghịch biến trên \(\left( {1; + \infty } \right)\)

e)

Hình 37a: Đồ thị nằm trên trục Ox khi \(x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)

=> Khoảng giá trị x mà y > 0 là \(\left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)

Hình 37b: Đồ thị nằm trên trục Ox khi \(x \in \left( { - 1;3} \right)\)

=> Khoảng giá trị x mà y > 0 là \(\left( { - 1;3} \right)\)

g)

Hình 37a: Đồ thị nằm dưới trục Ox khi \(x \in \left[ {0;2} \right]\)

=> Khoảng giá trị x mà y < 0 là \(\left[ {0;2} \right]\)

Hình 37b: Đồ thị nằm dưới trục Ox khi \(x \in \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right)\)

=> Khoảng giá trị x mà \(y \le 0\) là \(\left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right)\)