Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)
Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên
\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)
Vậy \(n\in\left\{1;2;3;6\right\}\)
c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)
Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên
\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Vậy \(n\in\left\{0;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)
\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)
\(=4\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow B⋮4\)
b, Vì 3 chia hết cho 3
32 chia hết cho 3
.
.
.
3100 chia hết cho 3
\(\Rightarrow B⋮3\)
c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)
\(=12+3^2\cdot12+....+3^{97}\cdot12\)
\(=12\left(1+3^2+...+3^{97}\right)\)
\(\Rightarrow B⋮12\)
Bài 1 : A = 109 + 1 = 1 + \(\overline{100.......0}\) (9 chữ số 0)
ta có tổng các chữ số của tổng A là 1 + 1 + 0 x 9 = 2 không chia hết cho 3. vậy A không chia hết cho 3
B = 1011 + 2 = 2 + \(\overline{1000....0}\) (11 chữ số 0)
tổng các chữ số của tổng B là 2 + 1 + 0 x 11 = 3 ⋮ 3
vậy tổng B chia hết cho 3
Bài 2 tìm N ϵ N để
(3n + 16) ⋮ (n+4) ⇔ 3 (n +4) +4 ⋮ n + 4⇔ 4 ⋮ n +4
⇔ n +4 ϵ Ư(4) = {-4; -1; 1; 4}
⇒ n = -8; -5; -3 ( loại)
n= 0 (thỏa mãn)
vậy n = 0