K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Gọi \(I(a,b,c)\) là một điểm thỏa mãn \(\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow (3-a,-1-b,2-c)+(1-a,-5-b,-c)=0\Rightarrow I(2,-3,1)\)

Lại có:

\(P=\overrightarrow{MA}.\overrightarrow{MB}=(\overrightarrow{MI}+\overrightarrow{IA})(\overrightarrow{MI}+\overrightarrow{IB})=MI^2+\overrightarrow{IB}.\overrightarrow{IA}\)

\(\Leftrightarrow P=MI^2-6\)

Để \(P_{\min}\Leftrightarrow MI_{\min}\), điều đó đồng nghĩa với việc \(M\) là hình chiếu của $I$ lên mặt phẳng $(P)$

Gọi \(M(a,b,c)\Rightarrow \overrightarrow{IM}=(a-2,b+3,c-1)=k(2,-1,2)\)

\(\Rightarrow \frac{a-2}{2}=\frac{b+3}{-1}=\frac{c-1}{2}\)

Mặt khác, \(2a-b+2c+9=0\) nên \(a=-2,b=-1,c=-3\)

Vậy \(M(-2,-1,-3)\)

23 tháng 5 2016
a) Gọi H là trung điểm của  BC thì H là hình chiếu vuông góc của  B trên mp(P)
mp(P)  có vecto pháp tuyến  \(\overrightarrow{n}\)=(1;1;1). Nếu gọi  Δ là đường thẳng  qua B và vuông góc với (P) thì Δ có phương  trình tham số  là: \(\begin{cases}x=5+t\\y=-1+t\\z=-2+t\end{cases}\) (t\(\in R\) )
Tọa độ H ứng với t là nghiệm đúng của phương trình : \(\left(5+t\right)+\left(-1+t\right)+\left(-2+t\right)+1=0\Leftrightarrow t=-1\)
Suy ra \(H\left(4;-2;-3\right)\) và \(\begin{cases}x_C=4.2-5=3\\y_c=-2.2+1=-3\\z_C=-3.2+2=-4\end{cases}\) Vậy \(C\left(3;-3;-4\right)\)
 
Gọi \(f\left(M\right)=x+y+z-1\) Với \(M\left(x;y;z\right);A\left(1;-3;0\right);B\left(5;-1;-2\right)\)
Ta có : \(f\left(A\right)=-3< 0;f\left(B\right)=1>0\) \(\Rightarrow\) A;B nằm khác phía đối với mp(P)
Do đó 2 điểm B,C đối xứng nhau qua mp(P) nên M là 1 điểm bất kì trên mp(P) ta luôn có \(MB=MC\)
Ta có: \(\left|MA-MB\right|=\left|MA-MC\right|\le AC\) 
Đẳng thức xảy ra khi 3 điểm A,C,M thẳng hàng và điểm M nằm ngoài AC. Khi đó M trùng với Mo là giao điểm của đường thẳng AC với mp(P). đường thẳng AC có VTCP \(\overrightarrow{u}=\left(2;0;-4\right)\) PTTS AC : \(\begin{cases}x=1+2t\\y=-1\\z=-4t\end{cases}\)
Tọa độ Mo ứng với t là nghiệm đúng của pt: \(\left(1+2t\right)-1-4t-1=0\Leftrightarrow t=\frac{-1}{2}\) 
Suy ra \(M_o\left(0;-1;2\right)\)
Vậy max \(\left|MA-MB\right|=AC=2\sqrt{5}\) khi M ở vị trí M(0;-1;2)
5 tháng 1 2017

Chọn B

 

Ta có A, B cùng nằm về một phía của (P). Gọi A' đối xứng với A qua (P) suy ra A' (-2; 2; 1). Ta có MA + MB = MA' + MB ≥ BA'. Dấu bằng xảy ra khi M là giao điểm của BA' và (P). Xác định được . Suy ra Chọn B

1 tháng 6 2017

Chọn A

 

Gọi I, O lần lượt là trung điểm của AB và IC, khi đó với điểm M bất kỳ ta luôn có

nên d nhỏ nhất khi và chỉ khi  nên M là hình chiếu vuông góc của O lên (P). A(0; -2; -1), B (-2,-4,3) => I (-1 ; -3 ; 1), kết hợp với C (1; 3; -1) ta có O (0;0;0)

Đường thẳng qua O (0;0;0) vuông góc với (P) có phương trình

Giao điểm của d và (P) chính là hình chiếu vuông góc M của O (0;0;0) lên mặt phẳng (P).

 

17 tháng 5 2016

a. Do \(\left(-2\right)+1-3+1=-3< 0\)

    và  \(4+\left(-5\right)-6+1=-6< 0\)

nên A, B  ở về cùng 1 phía của mặt phẳng (P). Do đó điểm \(C\in\left(P\right)\) sao cho \(CA+CB\) nhỏ nhất chính là giao điểm của đoạn AB với mặt phẳng (P), trong đó A' là điểm đối xứng với A qua mặt phẳng (P)

Giả sử \(A'\left(x;y;z\right)\) do A' đối xứng với A qua mặt phẳng (P) nên ta có hệ phương trình :

\(\begin{cases}\frac{x-2}{2}+\frac{y+2}{2}-\frac{zx+2}{2}+1=0\\\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-3}{-1}\end{cases}\)

Giải hệ ta được \(x=0;y=3;z=1\)

Do đó \(A'\left(0;3;1\right)\)

Gọi \(C\left(x;y;z\right)\) là giao điểm của A'B với (P). Khi đó tọa độ của C' thỏa mãn phương tringf của (P) và hai vecto \(\overrightarrow{A'C};\overrightarrow{A'B}\) cùng phương. Do đó, ta có hệ phương trình :

\(\begin{cases}x+y-z+1=0\\\frac{x-0}{4-0}=\frac{y-3}{-5-3}=\frac{z-1}{6-1}\end{cases}\)

Từ phương trình thứ 2 suy ra \(y=-2x+3\) và \(z=\frac{5}{4}x+1\)

Thay vào phương trình thứ nhất ta được \(x=\frac{3}{4}\). Từ đó tìm được \(y=\frac{3}{2}\) và \(z=\frac{31}{16}\)

Vậy điềm \(C\) cần tìm là \(C\left(\frac{3}{4};\frac{3}{2};\frac{31}{16}\right)\)

 

b. Gọi I là trung điểm của AB. Khi đó \(I\left(1;-2;\frac{9}{2}\right)\) và với mọi điểm D đều có \(\overrightarrow{DA}+\overrightarrow{DB}=2\overrightarrow{DI}\)

Vậy \(D\in\left(P\right):\left|\overrightarrow{DA}+\overrightarrow{DB}\right|\) bé nhất \(\Leftrightarrow\) D là hình chiếu của I trên mặt phẳng (P)

Gọi \(\left(x;y;z\right)\) là tọa độ của hình chiếu điểm I trên (P). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y-z+1=0\\\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-\frac{9}{2}}{-1}\end{cases}\)

Giải hệ ta thu được : 

\(x=\frac{5}{2};y=-\frac{1}{2};z=3\)

Vậy điểm \(D\in\left(P\right)\) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài nhỏ nhất là \(D\left(\frac{5}{2};-\frac{1}{2};3\right)\)

12 tháng 5 2017

Chọn C

Ta có G(1;0;2), ta tìm hình chiếu của G lên mặt phẳng (P) bằng cách tìm giao điểm của đường thẳng qua G vuông góc với mặt phẳng (P) với mặt phẳng (P).

 

Phương trình đường thẳng qua điểm G và vuông góc với mặt phẳng (P)

NV
21 tháng 4 2020

Mặt phẳng gọi là (P) đi cho dễ gõ kí tự.

Thay tọa độ A; B vào (P) cho 2 kết quả cùng dấu dương \(\Rightarrow\) A và B nằm cùng phía so với (P)

Gọi A' là điểm đối xứng với A qua (P), với điểm M bất kì thuộc (P) ta luôn có \(MA=MA'\Rightarrow MA+MB=MA'+MB\ge A'B\)

\(\Rightarrow MA+MB_{min}\) khi M;B;A' thẳng hàng hay M là giao điểm của đường thẳng A'B và (P)

Pt tham số của đường thẳng d qua A và vuông góc (P) nhận \(\left(1;-2;0\right)\) là vtcp: \(\left\{{}\begin{matrix}x=1+t\\y=-2t\\z=-2\end{matrix}\right.\)

Gọi C là giao của d và (P) \(\Rightarrow\) tọa độ C thỏa mãn:

\(1+t-2\left(-2t\right)+11=0\Rightarrow t=-\frac{12}{5}\) \(\Rightarrow C\left(-\frac{7}{5};\frac{24}{5};-2\right)\)

C là trung điểm AA' \(\Rightarrow A'\left(-\frac{19}{5};\frac{48}{5};-2\right)\)

\(\Rightarrow\overrightarrow{A'B}=\left(\frac{24}{5};-\frac{43}{5};-3\right)=\frac{1}{5}\left(24;-43;-15\right)\)

Phương trình tham số A'B: \(\left\{{}\begin{matrix}x=1+24t\\y=1-43t\\z=-5-15t\end{matrix}\right.\)

Tọa độ M thỏa mãn:

\(1+24t-2\left(1-43t\right)+11=0\Rightarrow t=-\frac{1}{11}\) \(\Rightarrow M\left(-\frac{13}{11};\frac{54}{11};-\frac{40}{11}\right)\)

Kết quả ko giống, bạn xem lại đề bài có ghi nhầm chỗ nào ko

9 tháng 7 2019

M(7/6;2;-10/3) (Đáp án mình không trùng với 4 đáp án của bài)

22 tháng 6 2018