\(\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{990}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Đặt tổng trên = A

Có : A = 1/1.2.3 + 1/2.3.4 + ...... + 1/9.10.11

2A = 2/1.2.3 + 2/2.3.4 + ...... + 2/9.10.11

     = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ....... + 1/9.10 - 1/10.11

     = 1/1.2 - 1/10.11

     = 1/2 - 1/110 = 27/55

=> A = 27/55 : 2 = 27/110

Tk mk nha

15 tháng 5 2016

\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)

\(\Rightarrow\frac{1}{2}M=\frac{1}{2}\left(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\right)\)

\(\Rightarrow\frac{1}{2}M=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\)

\(\Rightarrow\frac{1}{2}M=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{43.44}+\frac{1}{44.45}\)

\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)

\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{45}=\frac{9}{45}-\frac{1}{45}=\frac{8}{45}\)

\(\Rightarrow M=\frac{8}{45}:\frac{1}{2}=\frac{8}{45}.2=\frac{16}{45}\)

nhớ ấn đúng cho mình nha

15 tháng 5 2016

\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)

\(=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)

\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)

\(=2\left(\frac{1}{5}-\frac{1}{45}\right)\)

\(=2\times\frac{8}{45}\)

\(=\frac{16}{45}\)

5 tháng 3 2016

ggggggggggggggggg

22 tháng 3 2019

B = 2 - 4 - 6 + 8 + 10 - 12 -14 + 16 + ...+ 2010 - 2012 - 2014 + 2016

   = (2 - 4 - 6 + 8 ) + ( 10 - 12 -14 +16 ) + ...+ ( 2010 - 2012 - 2014 + 2016 )

   = 0 + 0 +...+ 0 + 0 (có 252 số hạng 0)

    = 0

22 tháng 3 2019

Ta có:  Từ 2 đến 2016 có \(\frac{2016-2}{2}+1=1008\)

B=(2-4)-(6-8)+(10-12)-(14-16)+...+(2010-2012)-(2014-2016)  như vậy có 1008:2=504 nhóm

=-2+2-2+2+...-2+2 có 504 số hạng trong đó có: 525 số -2 và 525 số +2

=0

15 tháng 5 2016

Chào bạn, bạn hãy theo dõi bài giải của mình nhé!

\(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)

\(=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)

\(=\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+...+\frac{2}{43\cdot44}+\frac{2}{44\cdot45}\)

\(=2\left(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{43\cdot44}+\frac{1}{44\cdot45}\right)\)

\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)

\(=2\left(\frac{1}{5}-\frac{1}{45}\right)=2\left(\frac{9}{45}-\frac{1}{45}\right)=2\cdot\frac{8}{45}=\frac{16}{45}\)

Chúc bạn học tốt!

10 tháng 5 2017

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)

BẤM ĐÚNG NHÉ

8 tháng 6 2017

1023/1024 nhé bạn

28 tháng 3 2022

mong là trước ngày mai

28 tháng 3 2022

`Answer:`

Bài 1:

a. \(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)

\(\Leftrightarrow\frac{1}{2}-\frac{2}{3}x+\frac{1}{3}=\frac{2}{3}\)

\(\Leftrightarrow\frac{5}{6}-\frac{2}{3}x=\frac{2}{3}\)

\(\Leftrightarrow-\frac{2}{3}=\frac{2}{3}-\frac{5}{6}\)

\(\Leftrightarrow-\frac{2}{3}x=-\frac{1}{6}\)

\(\Leftrightarrow x=-\frac{1}{6}:-\frac{2}{3}\)

\(\Leftrightarrow x=\frac{1}{4}\)

b. \(\frac{3}{x+5}=15\%\left(ĐKXĐ:x\ne-5\right)\)

\(\Leftrightarrow\frac{3}{x+5}=\frac{3}{20}\)

\(\Leftrightarrow\frac{60}{20\left(x+5\right)}=\frac{3\left(x+5\right)}{20\left(x+5\right)}\)

\(\Leftrightarrow60x=3x+15\)

\(\Leftrightarrow-3x=-45\)

\(\Leftrightarrow x=15\)

Bài 2:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

24 tháng 7 2016

a/ (-3,2).\(\frac{-15}{64}\)+(0,8-2\(\frac{4}{5}\)):1\(\frac{23}{24}\)

=(\(\frac{-16}{5}\)).\(\frac{-15}{64}\)+(\(\frac{4}{5}\)-\(\frac{14}{5}\)):\(\frac{47}{24}\)

=(\(\frac{-16}{5}\)).\(\frac{-15}{64}\)+(-2):\(\frac{47}{24}\)

\(\frac{3}{4}\)+\(\frac{-48}{47}\)

=\(\frac{-51}{188}\)

 

25 tháng 7 2016

b/ 1\(\frac{13}{15}\).3.(0,5)\(^2\).3+(\(\frac{8}{15}\)-1\(\frac{19}{60}\)):1\(\frac{23}{24}\)

\(\frac{28}{15}\).3.\(\frac{1}{4}\).3+(\(\frac{8}{15}\)-\(\frac{79}{60}\)):\(\frac{47}{24}\)

\(\frac{28}{15}\).3.\(\frac{1}{4}\).3+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{28}{5}\).\(\frac{1}{4}\).3+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{7}{5}\).3+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{21}{5}\)+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{21}{5}\)+(\(\frac{-2}{5}\))

\(\frac{19}{5}\)

mk làm hơi dài dòng chút 

CHÚC BẠN HỌC TỐT

18 tháng 4 2019

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(C=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{999\cdot1000}\right]\)

Tính nốt :v

Ta có

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(\Rightarrow2C=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{2}-\frac{1}{999000}\)

\(=\frac{499500}{999000}-\frac{1}{999000}\)

\(=\frac{499499}{999000}\)

\(\Rightarrow C=\frac{499499}{1998000}\)

đúng nha bạn nhớ k mik

\(N=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)

=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)

=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{10}{33}\)

9 tháng 4 2019

\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4970}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{70.71}\)

\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{70}-\frac{1}{71}\)

\(M=1-\frac{1}{71}\)

\(M=\frac{70}{71}\)

\(N=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(N=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)

\(N=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)

\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(N=\frac{1}{3}.\frac{10}{33}\)

\(N=\frac{10}{99}\)