\(\frac{1}{2011.2009}\)+ \(\frac{1}{2009.2007}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)

1 tháng 3 2018

mình ghi lại đề nhé

Chứng tỏ rằng :

a, 1028 + 8  chia hết cho 72

b, 8+ 220 chia hết cho 17

c, 10n + 18n - 1 chia hết cho 27

d, 10n +72n - 1 chia hết cho 81

1 tháng 3 2018

a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8

Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9 

=> 1028 + 8 chia hết cho 8.9 = 72

b) 8+ 220 = (23)+ 220 = 224 + 220 = 220.(2+ 1) = 220.17 chia hết cho 17 => 8+ 220 chia hết cho 17

c) 10+ 18n - 1 = (10- 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)

= 9.111...1 - 9n + 27n   (Có n chữ số 1)

= 9.(111...1 - n) + 27n

Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3

=> 9.(111...1 - n) chia hết cho 9.3 = 27

Mà 27n chia hết cho 27

Nên 9.(111...1 - n) + 27n chia hết cho 27

Vậy....

d) 10+ 72n - 1 = (10- 1) - 9n + 81n = 99...9 - 9n + 81n  (Có n chữ số 9)

= 9.(11..1 - n) + 81n

Nhận  xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9 

=> 9.(11...1 - n) chia hết cho 9.9 = 81

Mà 81n chia hết cho 81

Nên 9.(11..1 - n) + 81n chia hết cho 81

Vậy...

20 tháng 6 2017

Mình ko biết sory

6 tháng 8 2017

nhìn mà ko muốn nghĩ luôn

30 tháng 3 2020

ai biết làm câu nào thì làm giúp mik nha

30 tháng 3 2020

a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3

b) Có 4n-9=2(2n+1)-13

Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1

Vậy để 2(2n+1)-13 chia hết cho 2n+1

=> 13 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)

Ta có bảng

2n+1-13-113
2n-14-202
n-7-101

d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)

Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)