Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Bài 1:
a) Cho A = 1+14+...+142014
=> 14A = 14 + 142 +...+142015
=> 14A - A = 142015 - 1
13A = 142015 - 1
mà 13 A chia hết cho 13
=> đpcm
b) làm tương tự
c) 1+3+32 +...+32015 ( có 2016 số hạng)
= (1+3+32 +33) + ...+ (32012 + 32013 +32014 +32015)
= 40 + ...+ 32012.(1+3+32+33)
...
Bài 2:
N = 7+72 + 73 +...+ 7n
=> 7N = 72 + 73 +74 +...+ 7n+1
=> \(6N=7^{n+1}-7\)
Thay vào biểu thức
=> 7n+1 -7 + 7 = 22016
7n+1 = 22016
...
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
a,Ta có: A có 2016 số số hạng, ghép A thành 504 nhóm, mỗi nhóm có 4 số hạng như sau :
\(A=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})\)
\(A=3.(1+3+3^2)+3^5.(1+3+3^2)+....+3^{2013}.(1+3+3^2)\)
\(A=3.13+3^5.13+....+3^{2013}.13\)
\(A=13.(3+3^5+...+3^{2013})⋮13\)
\(\Rightarrow A⋮13\)
\(a\)) Ta có :
\(A=3+3^2+3^3+..........+3^{2016}\) (2016 số hạng )
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}\right)\) (672 nhóm )
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+.......+3^{2015}\left(1+3+3^2\right)\)
\(A=3.13+3^4.13+........+3^{2015}.13\)
\(A=13\left(3+3^4+.......+3^{2016}\right)\)
\(\Rightarrow A\) \(⋮\) \(13\)
\(\Rightarrowđpcm\)
\(b\)) Ta có :
\(A=3+3^2+3^3+..........+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+...............+2^{2016}+3^{2017}\)
\(\Rightarrow3A-A=3^{2017}-3\)
\(\Rightarrow2A=3^{2017}-3\)
\(\Rightarrow2A+3=3^{2017}\)(1)
Theo bài ta có :
\(2A+3=3^{2x}\)(2)
Từ (1) và (2) ta có :
\(3^{2x}=3^{2017}\)
\(\Rightarrow2x=2017\)
\(x=2017:2\)
\(x=1008,5\) ( ko thoả mãn \(x\in N\))
Vậy ko tìm dc giá trị của \(x\) thỏa mãn theo yêu cầu
a) ta có: \(M=1+3+3^2+3^3+...+3^{119}\)
\(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(M=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{117}.\left(1+3+3^2\right)\)
\(M=\left(1+3+3^2\right).\left(1+3^3+...+3^{117}\right)\)
\(M=13.\left(1+3^3+...+3^{117}\right)⋮13\left(đpcm\right)\)
b) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
\(\Rightarrow N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< 1\left(đpcm\right)\)
a, \(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(1+3^3+3^6+...+3^{117}\right)\)
\(=13.\left(1+3^3+...+3^{117}\right)⋮13\)
b, \(N=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2010.2010}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow N< 1\)
1)Tìm x thuộc N sao cho:
2016+0x=2016 <=> 0x=0 đúng với mọi x thuộc N
Số phần tử của tập A:
A=N
2, \(M=\left(3^1+3^2+3^3\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+..+3^{28}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+..+3^{28}.13=13.\left(3+3^4+...+3^{28}\right)\)chia hết cho 13