Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : B = 202 - 192 + 182 - 172 + ..... + 22 - 12
=> B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ..... + (2 - 1)(2 + 1)
=> B = 39 + 35 + 31 + ..... + 3
Số số hạng của dãy trên là :
(39 - 3) : 4 + 1 = 10 (số)
Tổng B là :
(39 + 3) x 10 : 2 = 210
Vậy B = 210
Ta có : \(C=\left(15^4-1\right)\left(15^4+1\right)-3^8.5^8\)
\(\Rightarrow C=\left(15^4\right)^2-1-15^8\)
\(\Rightarrow C=15^8-1-15^8\)
=> C = -1
Vậy C = - 1
Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500
1a)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi x=y=1
b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi a=b=c=0
Ta có
a + b + c = abc
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Ta lại có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Ta có:a+b+c=abc
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Ta lại có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
a) Đặt \(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^4-1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(...\)
\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2A=3^{64}-1\)
\(A=\frac{3^{64}-1}{2}\)
Ta có: \(a^2+b^2+c^2\ge3abc\)
Suy ra: \(1\ge abc\)
Mà \(a+b+c\ge3\sqrt{abc}\ge3\)
Suy ra: \(2\left(a+b+c\right)\ge6\)
Suy ra: \(VT+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge VT+\frac{1}{a+b+c}\ge VT+\frac{1}{3}=6+\frac{1}{3}=6\frac{1}{3}\)
Vậy .........
UCT -->Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2}{2}+\frac{5}{2}\) với \(0\le a^2;b^2;c^2\le3\)
Tương tự + lại là xog
a, 1001^2=1001.1001=1001.(1000+1)=1001.1000+1001=1001000+1001=...
b,999^2=999.999=999.(1000-1)=999.1000-999=999000-999=...
c, 22,9.30,1=22,9.(30+0,1)=22,9.30+22,9.0,1=22,9.10.3+2,29=229.3+2,29=687+2,29=689,29 (tui khong biet giau mu len phai viet vay thong cam nhung van dung day)