Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1\times\dfrac{1}{2}+\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+...+\dfrac{1}{99}\times\dfrac{1}{100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
\(1\frac{1}{2}\times1\frac{1}{3}\times1\frac{1}{4}\times...\times1\frac{1}{100}\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{101}{100}\)
\(=\frac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)
\(=\frac{101}{2}\)
a, = 1/2 x 2/3 x 3/4 x .... x 99/100 = 1/100
b, = 24/25 x 5/7 x 7/9 x .... x 97/99 = 24/25 x 5/99 = 8/165
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
=
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = 99.100.101 : 3 = 333 300
Vậy 1.2 + 2.3 + 3.4 + ... + 99.100 = 333 300
P.S : Dấu "." là dấu "x"
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=333300
Bài 3 :suy ra thì 2 số cùng thêm 1,5 nên hiệu k thay đổi
Số lớn : 3 lần
Số bé : 1 lần
hiệu số phần bằng nhau là :
3 - 1 = 2 ( phần )
số lớn LS là :
22,8 : 2 x 3 34,2
số lớn LĐ là :
34,2 - 1,5 =32,7
số bé là :
32,7 - 22,8 = 9,9
đúng 100%
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)