Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{10}.\frac{1}{11}+\frac{1}{11}.\frac{1}{12}+\frac{1}{12}.\frac{1}{13}+....+\frac{1}{20}.\frac{1}{21}\)
\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+....+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{10}-\frac{1}{21}\)
\(=\frac{11}{210}\)
Đặt A=1.2+2.3+3.4+............+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.............+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+................+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300
a) \(\frac{2}{3}x\times\frac{1}{2}=\frac{1}{10}\Rightarrow\frac{2}{3}x=\frac{1}{5}\Rightarrow x=\frac{3}{10}\)
(1 + 1/2) . (1 + 1/3) . (1 + 1/4) ... (1 + 1/100)
= 3/2 . 4/3 . 5/4 ... 101/100
= 101/2
3/2 . 4/3 . 5/4 . .... . 101/100
101/2
pạn rút gọn sẽ thấy đúng thôi
\(\frac{10}{3}.x+\frac{67}{4}=\frac{53}{4}\)
\(\frac{10}{3}.x=\frac{53}{4}-\frac{67}{4}\)
\(\frac{10}{3}.x=-\frac{7}{2}\)
\(x=-\frac{7}{2}:\frac{10}{3}\)
\(x=-\frac{21}{20}\)
a) = 1/10 - 1/11 + 1/11 -1/12 + 1/12 - 1/13 +1/13 1/14 +...+ 1/78 - 1/79
= 1/10 - 1/79
= máy tính ok
mấy câu khác bn làm tương tự là đc nhưng nhớ nhanh thêm khoảng cách giữa các mẫu nha
a)\(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{78.79}=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{78}-\frac{1}{79}=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)
b) \(\frac{8}{7.9}+\frac{8}{9.11}+...+\frac{8}{133.135}=4\left(\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{133.135}\right)\)
\(=4\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{133}-\frac{1}{135}\right)=4\left(\frac{1}{7}-\frac{1}{135}\right)=4.\frac{128}{945}=\frac{456}{945}\)
c) \(\frac{12}{8.11}+\frac{12}{11.14}+...+\frac{12}{503.506}=4\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{503.506}\right)\)
\(=4\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{503}-\frac{1}{506}\right)=4\left(\frac{1}{8}-\frac{1}{506}\right)=\frac{249}{506}\)
d) \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{391.394}=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{391.394}\right)\)
\(=\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{391}-\frac{1}{394}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{394}\right)=\frac{1}{3}.\frac{195}{788}=\frac{65}{788}\)
e) \(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{602.605}=\frac{4}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\right)\)
\(=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\right)=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{605}\right)=\frac{4}{3}.\frac{24}{121}=\frac{32}{121}\)
g) Sửa đề\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{820}=2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1640}\right)=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{40.41}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{40}-\frac{1}{41}\right)=2\left(1-\frac{1}{41}\right)=2.\frac{40}{41}=\frac{80}{41}\)
mk chỉ pik câu C thui
C= (1 - 1/2).(1 - 1/3).(1 - 1/4).......(1 - 4/4)....(1-1/2007)
C= (1 - 1/2).(1 - 1/3)..........0........(1 - 1/2007)
C= 0
\(A=\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\\ \)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{1}{3}-\frac{1}{2x+3}\)\(=\frac{2x}{3\left(2x+3\right)}\)
\(A=\frac{x}{3\left(2x+3\right)}=\frac{100}{609}=\frac{100}{3.203}=\frac{100}{3\left(2.100+3\right)}\)\(\Rightarrow x=100\)
\(A=\left(\frac{1}{10}-1\right).\left(\frac{1}{11}-1\right)....\left(\frac{1}{100}-1\right)\))
\(A=\frac{-9}{10}.\frac{-10}{11}...\frac{-99}{100}\) ( lẻ thừa số nguyên âm)
\(A=\frac{-9}{100}\)
\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)...\left(\frac{1}{100}-1\right)\)
\(\Rightarrow A=-\frac{9}{10}.\frac{-10}{11}...\frac{-99}{100}\)
\(\Rightarrow-A=\frac{9}{10}.\frac{10}{11}...\frac{99}{100}\)
\(\Rightarrow-A=\frac{9.10.11...99}{10.11...99.100}\)
\(\Rightarrow-A=\frac{9}{100}\)
\(\Rightarrow A=-\frac{9}{100}\)