Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)
\(\Rightarrow A_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{1}{x+1}+\frac{x+1}{4}\geq 1; \frac{1}{y+1}+\frac{y+1}{4}\geq 1; \frac{1}{z+1}+\frac{z+1}{4}\geq 1\)
Cộng theo vế:
\(\Rightarrow A+\frac{x+y+z+3}{4}\geq 3\)
\(\Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\)
Mà \(x+y+z\leq 3\Rightarrow \Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)
Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)
-------------
Hoặc bạn có thể áp dụng luôn BĐT Cauchy-Schwarz:
\(A\geq \frac{(1+1+1)^2}{1+x+1+y+1+z}=\frac{9}{x+y+z+3}\geq \frac{9}{3+3}=\frac{3}{2}\)
a: \(=25x^4-10x^3+5x^2\)
c: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2
= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)
= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2
= -3x3 - 3x2 + 4x + 1
2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3
=> (x + 2)(x - 1 - x + 3) = 3
=> (x + 2).0 = 3
...(xem lại đề)
\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)
\(\Leftrightarrow2\left(x+2\right)=3\)
\(\Leftrightarrow x+2=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{3}{2}-2\)
\(\Leftrightarrow x=-\frac{1}{2}\)
( 2x - 1 ) - x = 0
=> 2x - 1 = x
=> 2x - x = 1
=> x = 1
( x - 1 )( 2x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { 1 ; 3/2 }
\(\frac{x}{x+1}=\frac{x+2}{x-1}\)( đkxđ : \(x\ne\pm1\))
( Chỗ này chưa học kĩ nên chưa hiểu lắm :]
1) \(52^2+48^2+52\cdot96\)
\(=52^2+2\cdot52\cdot48+48^2\)
\(=\left(52+48\right)^2=100^2=10000\)
2) \(\left(1-2x\right)\left(5x-7\right)=\left(5x-7\right)-2x\left(5x-7\right)\)
\(=5x-7-10x^2+14x\)
\(=-10x^2+19x-7\)
3) \(x-x^2-1=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\forall x\)