\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

2,

a, Gọi 3 góc của tam giác đó là: A;B;C \(\left(A;B;C>0\right)\)

Theo đề bài ta có:

\(\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{2}}=\widehat{\dfrac{C}{3}}\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (đ/l tổng 3 góc của tam giác)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{\widehat{A}}{1}=\widehat{\dfrac{B}{2}}=\widehat{\dfrac{C}{3}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\dfrac{180^0}{6}=30^0\)

+) \(\widehat{\dfrac{A}{1}}=30^0\Rightarrow\widehat{A}=30^0.1=30^0\)

+) \(\widehat{\dfrac{B}{2}}=30^0\Rightarrow\widehat{B}=30^0.2=60^0\)

+) \(\widehat{\dfrac{C}{3}}=30^0\Rightarrow\widehat{C}=30^0.3=90^0\)

\(\Delta ABC\)\(\widehat{C}=90^0\Rightarrow\Delta ABC\) là tam giác vuông.

b, C A B

26 tháng 10 2017

1) Tính hợp lý :

\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}-\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\dfrac{1}{8}\)

\(=\dfrac{1}{8}\)

29 tháng 9 2017

a) \(0,75:4,5=\dfrac{1}{15}:\left(2x\right)\)

\(\Rightarrow\) \(\dfrac{1}{6}=\dfrac{1}{30}:x\)

\(\Rightarrow\) \(x=\dfrac{1}{5}\)

29 tháng 9 2017

a. \(0,75:4,5=\dfrac{1}{15}:\left(2x\right)\)

\(\Leftrightarrow\dfrac{1}{15}:\left(2x\right)=0,75:4,5\)

\(\Rightarrow\dfrac{1}{15}:\left(2x\right)=\dfrac{1}{6}\)

\(\Rightarrow2x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)

\(\Rightarrow x=\dfrac{2}{5}:2=\dfrac{1}{5}\)

Vậy...

b. \(\dfrac{-5}{x-2}=\dfrac{3}{-9}\)

\(\Leftrightarrow\left(x-2\right).3=\left(-5\right).\left(-9\right)\)

\(\Rightarrow\left(x-2\right).3=45\)

\(\Rightarrow\left(x-2\right)=45:3=15\)

\(\Rightarrow x=15+2=17\)

Vậy...

c. \(\dfrac{-2}{3}:x=\dfrac{1}{2}:\dfrac{3}{4}\)

\(\Rightarrow\dfrac{-2}{3}:x=\dfrac{2}{3}\)

\(\Rightarrow x=\dfrac{-2}{3}:\dfrac{2}{3}=-1\)

Vậy...

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow50x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\dfrac{99}{100}=1\)

\(\Leftrightarrow50x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{5000}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

Có tất cả : (99 - 1) : 1 + 1 = 99 (số x)

\(\Rightarrow99x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\dfrac{99}{100}=1\Rightarrow99x=1-\dfrac{99}{100}\)

\(\Rightarrow99x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{100.99}=\dfrac{1}{9900}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+....+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=3\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

11 tháng 9 2017

a/ \(x+\dfrac{3}{5}=\dfrac{4}{7}\)

\(x=\dfrac{4}{7}-\dfrac{3}{5}\)

\(x=-\dfrac{1}{35}\)

Vậy ....

b/ \(x-\dfrac{5}{6}=\dfrac{1}{6}\)

\(x=\dfrac{1}{6}+\dfrac{5}{6}\)

\(x=1\)

Vậy ....

c/\(-\dfrac{5}{7}-x=\dfrac{-9}{10}\)

\(x=\dfrac{-5}{7}-\dfrac{-9}{10}\)

\(x=\dfrac{13}{70}\)

Vậy .....

d/ \(\dfrac{5}{7}-x=10\)

\(x=\dfrac{5}{7}-10\)

\(x=\dfrac{-65}{7}\)

Vậy ...

11 tháng 9 2017

e/ \(x:\left(\dfrac{1}{9}-\dfrac{2}{5}\right)=\dfrac{-1}{2}\)

\(x:\dfrac{-13}{45}=\dfrac{-1}{2}\)

\(x=\dfrac{-1}{2}.\dfrac{-13}{45}\)

\(x=\dfrac{13}{90}\)

Vậy ....

f/ \(\left(\dfrac{-3}{5}+1,25\right)x=\dfrac{1}{3}\)

\(0,65.x=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}:0,65\)

\(x=\dfrac{20}{39}\)

Vậy ....

g/ \(\dfrac{1}{3}x+\left(\dfrac{2}{3}-\dfrac{4}{9}\right)=\dfrac{-3}{4}\)

\(\dfrac{1}{3}x+\dfrac{2}{9}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}x=\dfrac{-35}{36}\)

\(\Leftrightarrow x=\dfrac{-35}{12}\)

Vậy ...

2 tháng 11 2017

1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho

2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)

\(\dfrac{x}{3}=4\Rightarrow x=12\)

\(\dfrac{y}{5}=4\Rightarrow y=20\)

Vậy x=12 và y=20

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

30 tháng 7 2017

\(a,\dfrac{x}{6}=\dfrac{7}{3}\Rightarrow x=\dfrac{6.7}{3}\Rightarrow x=14\)

\(b,\dfrac{20}{x}=\dfrac{-12}{15}\Rightarrow x=\dfrac{20.15}{-12}\Rightarrow x=-25\)

\(c,\dfrac{-15}{35}=\dfrac{27}{x}\Rightarrow x=\dfrac{35.27}{-15}\Rightarrow x=-63\)

\(d,\dfrac{\dfrac{4}{5}}{1\dfrac{2}{5}}=\dfrac{2\dfrac{2}{5}}{x}\Rightarrow\dfrac{\dfrac{4}{5}}{\dfrac{7}{5}}=\dfrac{\dfrac{12}{5}}{x}\Rightarrow x=\dfrac{\dfrac{7}{5}.\dfrac{12}{5}}{\dfrac{4}{5}}\Rightarrow x=\dfrac{\dfrac{84}{25}}{\dfrac{4}{5}}\Rightarrow x=\dfrac{21}{5}\)

\(e,\dfrac{x}{1\dfrac{1}{4}}=\dfrac{5}{2}\Rightarrow\dfrac{x}{\dfrac{5}{4}}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{2}.\dfrac{5}{4}\Rightarrow x=\dfrac{25}{8}\)

\(f,\dfrac{\dfrac{1}{2}}{1\dfrac{1}{4}}=\dfrac{x}{3\dfrac{1}{3}}\Rightarrow\dfrac{\dfrac{1}{2}}{\dfrac{5}{4}}=\dfrac{x}{\dfrac{10}{3}}\Rightarrow x=\dfrac{\dfrac{10}{3}.\dfrac{1}{2}}{\dfrac{5}{4}}\Rightarrow x=\dfrac{\dfrac{5}{3}}{\dfrac{5}{4}}\Rightarrow x=\dfrac{4}{3}\)

31 tháng 7 2017

a,\(1.25:0.2=1.25:0.1x\Rightarrow1.25:0.1x=\dfrac{25}{4}\Rightarrow0.1x=\dfrac{1}{5}\Rightarrow x=2\)

b,\(3.8:2x=\dfrac{1}{4}:2\dfrac{2}{3}\Rightarrow3.8:2x=\dfrac{3}{32}\Rightarrow2x=\dfrac{608}{15}\Rightarrow x=\dfrac{304}{15}\)

15 tháng 9 2017

Cái này bạn áp dụng tính chất 1 của tỉ lệ thức là ra ngay mà!

Hai tỉ số bằng nhau khi tích 2 ngoại tỉ bằng tích 2 trung tỉ.

16 tháng 9 2017

bạn ơi giúp mình đi mà