Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: \(\Leftrightarrow12x-60=7x-5\)
=>5x=55
=>x=11
b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)
=>(2x-3)(2x-2)(2x-4)=0
hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)
đó giúp mk đi mà
à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đó
giúp mk nha
cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a, Ta có: \(3^{21}>3^{20}\left(1\right)\)
\(2^{31}>2^{30}\)(2)
Mà \(\left\{{}\begin{matrix}3^{20}=3^{2.10}=\left(3^2\right)^{10}=9^{10}\\2^{30}=2^{3.10}=\left(2^3\right)^{10}=8^{10}\end{matrix}\right.\)
Do \(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\left(3\right)\)
Từ (1);(2) và (3) ta suy ra \(3^{21}>2^{31}\)
a)\(3^{21}=\left(3^2\right)^{10}.3=9^{10.3}\)
\(2^{31}=\left(2^3\right)^{10}.2=8^{10}.2\)
Vì \(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)
b)\(A=\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
\(A=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)
\(A=1+\dfrac{5^9}{1+5+5^2+..+5^9}\)
A=\(1+1:\dfrac{1+5+5^2+...+5^9}{5^9}\)
\(A=1+1:\left(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\right)\)
Tương tự \(B=1+1:\left(\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\right)\)
Vì \(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+....+\dfrac{1}{5}< \dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)
\(\Rightarrow A>B\)
Bài 3:
a: Ta có: \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
b: \(B=3+3^3+3^5+...+3^{29}\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\)
\(=273\left(1+3^6+...+3^{24}\right)⋮273\)
1/
a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)
=> 2A = 3^120 - 1
=> A = (3 ^120 - 1)/2
b/ 2A + 1 = 27x
<=> 3^120 = 27x
<=> 27^40 = 27x
<=> x = 40
c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)
= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)
= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)
= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5
+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)
= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)
= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)
= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13
a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )
b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1
2. Tính:
a, \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
=\(\left(\dfrac{-1}{20}+\dfrac{-1}{72}\right)+\left(\dfrac{-1}{30}+\dfrac{-1}{90}\right)+\left(\dfrac{-1}{42}+\dfrac{-1}{56}\right)\)
=\(\left(\dfrac{-18}{360}+\dfrac{-5}{360}\right)+\left(\dfrac{-3}{90}+\dfrac{-1}{90}\right)+\left(\dfrac{-4}{168}+\dfrac{-3}{168}\right)\)
=\(\dfrac{-23}{360}+\dfrac{-4}{90}+\dfrac{-7}{168}\)
=\(\dfrac{-23}{360}+\dfrac{-16}{360}+\dfrac{-15}{360}\)=\(\dfrac{-54}{360}=\dfrac{-3}{20}\)
b, \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)
=\(\dfrac{5}{2}+\dfrac{4}{1}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{3}{2}+\dfrac{1}{2}.\dfrac{1}{15}+\dfrac{1}{15}.\dfrac{13}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\left(\dfrac{4}{1}+\dfrac{3}{2}\right)+\dfrac{1}{15}.\left(\dfrac{1}{2}+\dfrac{13}{4}\right)\)
=\(\dfrac{5}{2}+\dfrac{1}{11}.\dfrac{11}{2}+\dfrac{1}{15}.\dfrac{15}{4}\)
=\(\dfrac{5}{2}+\dfrac{1}{2}+\dfrac{1}{4}\)
=\(\dfrac{10}{4}+\dfrac{2}{4}+\dfrac{1}{4}\)
=\(\dfrac{13}{4}\)
3. Tìm x
a, \(\dfrac{x-5}{8}=\dfrac{18}{x-5}\)
\(\left(x-5\right).\left(x-5\right)=8.18\)
\(\left(x-5\right)^2=144\)
\(x-5=\sqrt{144}\)
\(x-5=12\)
\(x=12+5\)
\(x=17\)
b,\(\left(x-2\right)^{10}=\left(2-x\right)^8\)
\(x^{10}-2^{10}=x^8-2^8\)
\(x^{10}+x^8=2^{10}+2^8\)
\(\Rightarrow x=2\)
2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
Giải:
Ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)
\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)
\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)
\(A< 1-\dfrac{1}{9}.\)
\(A< \dfrac{8}{9}_{\left(1\right)}.\)
Ta lại có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)
\(A>\dfrac{4}{10}.\)
\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\).
\(\Rightarrow A< \dfrac{8}{9}\) và \(A>\dfrac{2}{5}.\)
\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
Vậy ta thu được \(đpcm.\)
~ Học tốt!!!... ~ ^ _ ^
Câu 2 : Câu hỏi của Nguyễn Thu Hà - Toán lớp 6 | Học trực tuyến