\(9x^2+y^2+12x-10y+40\)

b) \(2x^2+2y^2-4...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

a) 9x2 + y2 + 12x - 10y + 40

= ( 9x2 + 12x + 4 ) + ( y2 - 10y + 25 ) + 11

= ( 3x + 2 )2 + ( y - 5 )2 + 11 ≥ 11 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=5\end{cases}}\)

Vậy GTNN của biểu thức = 11 <=> x = -2/3 ; y = 5

b) 2x2 + 2y2 - 4x - 4y - 2xy + 30

= ( x2 - 2xy + y2 ) + ( x2 - 4x + 4 ) + ( y2 - 4y + 4 ) + 22

= ( x - y )2 + ( x - 2 )2 + ( y - 2 )2 + 22 ≥ 22 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)

Vậy GTNN của biểu thức = 22 <=> x = y = 2

20 tháng 9 2020

a) Đặt \(A=9x^2+y^2+12x-10y+40\)

\(\Rightarrow A=\left(9x^2+12x+4\right)+\left(y^2-10y+25\right)+11\)

\(=\left(3x+2\right)^2+\left(y-5\right)^2+11\)

Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow\left(3x+2\right)^2+\left(y-5\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(y-5\right)^2+11\ge11\forall x,y\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=5\end{cases}}\)

Vậy \(minA=11\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=5\end{cases}}\)

b) Đặt \(B=2x^2+2y^2-4x-4y-2xy+30\)

\(\Rightarrow B=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+22\)

\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+22\)

Vì \(\left(x-y\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+22\ge22\forall x,y\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\Leftrightarrow x=y=2\)

Vậy \(minB=22\)\(\Leftrightarrow x=y=2\)

18 tháng 8 2020

WTF đăng một loạt vầy ai dám làm @@

Mấy bài này trong sách bài tập cx có bài mẫu

tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết

23 tháng 7 2017

TA có :

\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)

Vì  \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)

Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1

23 tháng 7 2017

BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H

H=\(X^2+2XY+Y^2-2X-2Y\)

H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)

H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1

H=\(\left(X+Y-1\right)^2-1\)

VẬY GTNN LÀ -1

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)

26 tháng 6 2018

*Trả lời:

a) Có vẻ như đề sai nên mình sửa lại:

\(2x^2y+2xy^2-x-y=\left(2x^2y+2xy^2\right)-\left(x+y\right)=2xy\cdot\left(x+y\right)-\left(x+y\right)=\left(2xy-1\right)\left(x+y\right)\)

b) \(8x^3-12x^2+6x-1=\left(2x\right)^3-3\cdot4x^2+3.2x-1=\left(2x-1\right)^3\)

c)\(4x^2-4xy+y^2-9=\left(4x^2-4xy+y^2\right)-9=\left(2x-y\right)^2-3^2=\left(2x-y-3\right)\left(2x-y+3\right)\)

e)\(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2y+y^2=\left(5x^2-y\right)^2\)

h)\(x^2-7xy+10y^2=x^2-2xy-5xy+10y^2=\left(x^2-2xy\right)-\left(5xy-10y^2\right)=x\left(x-2y\right)-5y\left(x-2y\right)=\left(x-5y\right)\left(x-2y\right)\)