Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=3,2.\frac{15}{24}-\left(80\%+\frac{2}{3}\right):3\frac{2}{3}\) \(b,B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{16}{5}.\frac{5}{8}-\left(\frac{4}{5}+\frac{2}{3}\right):\frac{11}{3}\) \(=\frac{\frac{6+9-10}{12}}{\frac{12+18-10}{48}}+\frac{\frac{30+24-15}{40}}{\frac{10+8-5}{40}}\)
\(=2-\frac{22}{15}.\frac{3}{11}\) \(=\frac{\frac{5}{12}}{\frac{20}{48}}+\frac{\frac{39}{40}}{\frac{13}{40}}\)
\(=2-\frac{2}{5}\) \(=\frac{5}{12}:\frac{5}{6}+\frac{39}{40}:\frac{13}{40}\)
\(=\frac{8}{5}\) \(=\frac{5}{12}.\frac{6}{5}+\frac{39}{40}.\frac{40}{13}\)
\(=\frac{1}{2}+3=3\frac{1}{2}\)
Hok tốt
Như thế này:
Từ A=.....=\(\frac{8}{5}\)
Còn từ B=....=\(3\frac{1}{2}\)
Bài 3 :
a ) Trên cùng 1 nửa mặt phẳng bờ chứa tia Ox , ta có xOy > xOz ( 60 độ > 30 độ ) nên tia Oz nằm giữa 2 tia Ox và Ot
b ) Vì góc xOz và zOm là 2 tia đối nhau nên ta có :
xOz + zOm = 180 độ
30 độ + zOm = 180 độ
zOm = 180 độ - 30 độ
zOm = 150 độ
Vậy zOm = 150 độ
tk mk nha
hihi mơn m.n trc hén !!!!!!!!!!
Bài 1:
33/77 = 3/7
\(\frac{1.25-49}{7.24+21}=\frac{25-49}{168+21}=-\frac{24}{189}=-\frac{8}{63}\)
\(\frac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}=\frac{2.\left(-13\right).\left(-3\right)\left(-3\right).\left(-5\right)\left(-2\right)}{\left(-3\right).2.2.\left(-5\right).\left(-13\right)\left(-2\right)}=\frac{-3}{2}\)
Bài 2:
a) \(x=-\frac{5}{9}+\frac{1}{13}=-\frac{56}{117}\)
b) \(\Leftrightarrow-\frac{5}{6}-x=\frac{1}{4}\Leftrightarrow x=-\frac{5}{6}-\frac{1}{4}=\frac{-13}{12}\)
c) Đề sai sai.
Bài 3: Có người làm r, nhưng chưa kiểm đúng sai.
a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)
đề sai
b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(x=-2004\)
c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)
\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)
\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)
\(x=200\)
d)chịu
\(-\frac{9}{11}\cdot\frac{3}{8}-\frac{9}{11}\cdot\frac{5}{8}+\frac{17}{11}=-\frac{9}{11}\left(\frac{3}{8}+\frac{5}{8}\right)+\frac{17}{11}=-\frac{9}{11}\cdot1+\frac{17}{11}=1\)
\(\frac{2}{1.3}+....+\frac{2}{53.55}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{53}-\frac{1}{55}=1-\frac{1}{55}=\frac{54}{55}\)
\(x+5-\frac{1}{2}=3\frac{1}{2}\)
\(x+5=3.5+0.5=4\)
\(x=4-5=-1\)
\(3^{x+1}=27=3^3\)
\(x+1=3\)
vậy x=2
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
\(D=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{99.101}{100^2}\)
\(=\frac{1.2...99}{2.3...100}.\frac{3.4....101}{2.3....100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
1 b) Đặt A=\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{66}+\frac{1}{78}\)
=> \(\frac{A}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}+\frac{1}{156}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}\)
=> \(A=\frac{2}{3}-\frac{2}{13}\)\(=\frac{20}{39}\)
Ta có: \(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+...+\frac{x}{78}=\frac{220}{39}\)
<=> \(x\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{78}\right)=\frac{220}{39}\Leftrightarrow x.\frac{20}{39}=\frac{220}{39}\Leftrightarrow x=11\)