Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(x-3\right)^2+\left(y-1\right)^2+5\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-1\right)^2+5\)là 5 khi x=3 và y=1
b) \(\left|x-3\right|+x^2+y^2+1\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
Do đó: \(\left|x-3\right|+x^2+y^2\ge0\forall x,y\)
\(\Rightarrow\left|x-3\right|+x^2+y^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-3\right|=0\\x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=0\\y=0\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-3\right|+x^2+y^2+1\) là 1 khi x=3; x=0 và y=0
c) \(\left|x-100\right|+\left(x-y\right)^2+100\)
Ta có: \(\left|x-100\right|\ge0\forall x\)
\(\left(x-y\right)^2\ge0\forall x,y\)
Do đó: \(\left|x-100\right|+\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow\left|x-100\right|+\left(x-y\right)^2+100\ge100\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-100\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-100=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=100\\100-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=100\\y=100\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-100\right|+\left(x-y\right)^2+100\) là 100 khi x=100 và y=100
Bài 2:
b) \(-125-\left(x-4\right)^2-\left(y-5\right)^2\)
Ta có: \(-125-\left(x-4\right)^2-\left(y-5\right)^2=-\left(x-4\right)^2-\left(y-5\right)^2-125\)
Ta có: \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)
Ta có: \(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow-\left(y-5\right)^2\le0\forall y\)
Do đó: \(-\left(x-4\right)^2-\left(y-5\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2-125\le-125\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125 khi x=4 và y=5
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
Bài 3:
B=(x-1)2+(y+2)2≥0
- minB=0 ⇔x=1 ; y=-2.
C=x2+\(\left|y-2\right|-5\)≥-5
- minC=-5 ⇔x=0 và y=2.
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
Câu 2:
a: 10km=10000m
10000m dây đồng có cân nặng là:
\(47:5\cdot10000=94000\left(g\right)\)
b: 300g=0,3kg=0,003 tạ
0,003 tạ nặng:
\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)
Câu 1:
a:
\(\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|-5>=-5\forall x\)
=>\(A>=-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
=>2x=1
=>x=1/2
Vậy: \(A_{Min}=-5\) khi x=1/2
b: \(2x^2>=0\forall x\)
=>\(2x^2+1>=1\forall x\)
=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)
=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)
=>B>=-2\(\forall\)x
Dấu '=' xảy ra khi x=0
c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)
\(\left(y+2\right)^2>=0\forall y\)
Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)
=>x=1/2 và y=-2
Shikatomi Miharu là mũ 2 hay nhân 2 vậy bạn