Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) chỉ cần thay đại X và Y làm sao cho thõa rồi thay là được. Như trường hợp này ta có thể thay X=2 và
Y=\(\sqrt{2}\)
thay vào ta được A= - 8
câu b) Vì A(x) chia hết cho B(x) và C(x) nên A(x) chia hết cho B(x).C(x)=(x-3)(2x+1)=\(2x^2-5x-3\)
a=-5 và b=-3
\(\Rightarrow\)thay vào ta tính dược 3a-2b = 3.(-5)-2.(-3)= -15+6 = -9
\(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)
Mặt khác, ta cũng có: \(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x-4y\right)^2=10xy\)
Do đó:
\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)
Vậy, \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)
1)
\(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)
\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)
\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)
Phân thức xác định
\(\Leftrightarrow2x^2-2\ne0\)
\(\Leftrightarrow2\left(x^2-1\right)\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
Vậy phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
Đặt \(A=\frac{4x-4}{2x^2-2}=\frac{4\left(x-1\right)}{2\left(x^2-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2}{x+1}\)
Thay x=-2 vào A ta có: \(A=\frac{2}{-2+1}=\frac{2}{-1}=-2\)
Vậy \(A=-2\)tại x=-2
Ta có: \(x\in Z\Rightarrow x+1\in Z\)
\(A\in Z\Leftrightarrow\left(x+1\right)\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\)
đến đây b tự làm nhé~
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)