K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

\(a.\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+xy+y^2+zy+zx+zy+z^2=x^2+y^2+z^2+2xy+2zy+2zx\)

\(b.\left(x-y+z\right)\left(x-y-z\right)=x^2-xy-zx-xy+y^2+zy+zx-zy-z^2=x^2+y^2-z^2-2xy\)

\(c.\left(x-1+y\right)\left(x-1-y\right)=x^2-x-xy-x+1+y+xy-y-y^2=x^2-y^2-2x+1\)

30 tháng 7 2016

a) = \(^{\left(x+y+z\right)^2}\)=\(x^2\)+\(y^2\)+\(z^2\)+ 2xy +2xz+2yz

b) = \(\left(x-y\right)^2\)-\(z^2\)=\(x^2\)- 2xy+\(y^2\)-\(z^2\)

c)= \(\left(x-1\right)^2\)-\(y^2\)\(x^2\)-2x+1 - \(y^2\)

21 tháng 3 2016
Mk đây mới học lớp 5. Chưa thể làm bài lớp 7 đc đâu. Thôi thì tặng bn bài thơ. Để làm câu trả lời hay nhất nè
19 tháng 5 2016

x-y-z=0 => x=y+z

thế vào rồi tính B

19 tháng 5 2016

Ta có: x-y-z = 0

\(\Rightarrow\) x = y+z

\(\Rightarrow\)y = x-z

\(\Rightarrow\)z = x-y

Thay vào B ta suy ra: \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)

\(\left(\frac{-y}{x}\right).\left(\frac{z}{y}\right).\left(\frac{x}{z}\right)\)

= -y/y

= -1

Vậy B = -1

22 tháng 12 2021

3r3reR

15 tháng 9 2017

* Nếu x = y = z = t; vẫn thỏa gt: x/(y+z+t) = y/(x+z+t) = z/(y+x+t) = t(y+z+x) = 1/3 
=> P = 2x/2x + 2x/2x + 2x/2x + 2x/2x = 4 

* Nếu có ít nhất 2 số khác nhau, giả sử x # y. tính chất tỉ lệ thức: 
x/(y+z+t) = y/(x+z+t) = (x-y) /(y+z+t -x-z-t) = (x-y)/(y-x) = -1 
=> x = -(y+z+t) => x+y+z+t = 0 
=> 
{ x+y = -(z+t) ---- { (x+y)/(z+t) = -1 
{ y+z = -(t+x) => { (y+z)/(t+x) = -1 
{ z+t = -(x+y) ---- { (z+t)/(x+y) = -1 
{ t+x = -(z+y) ---- { (t+x)/(z+y) = -1 

=> P = -1 -1 -1 -1 = -4 
~~~~~~~~~~~~~~~~~

15 tháng 9 2017

Cảm ơn nha

DD
22 tháng 6 2021

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{\left(x-z\right)\left(y-x\right)\left(y+z\right)}{xyz}=\frac{y.\left(-z\right).x}{xyz}=-1\)

5 tháng 5 2016

x - y - z = 0

x = y + z

y = x - z

z = x - y => -z = y - x

B = (1 - z/x)(1 - x/y) (1 + y/z)

B = (x/x - z/x)( y/y - x/y) ( z/z + y/z)

B = \(\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z+x}{z}=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)