K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{-11}{7}+\dfrac{1}{16}+\dfrac{6}{7}=\dfrac{-5}{7}+\dfrac{1}{16}=\dfrac{-80+7}{112}=\dfrac{-73}{112}\)

ban don gian cac pso roi cong lai rat de dang

31 tháng 1 2016

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)

=> x = -1999 hoặc x = - 2008

 

4 tháng 2 2016

Đặt a=123456 ta được:

\(\frac{2000}{123456^2-123457.123455}=\frac{2000}{a^2-\left(a+1\right)\left(a-1\right)}=\frac{2000}{a^2-a.\left(a-1\right)-1.\left(a-1\right)}\)

\(=\frac{2000}{a^2-a^2+a-a+1a^2a^{ }}=\frac{2000}{1}=2000\)

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

8 tháng 2 2016

đặt \(A=\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(A=\left(\frac{2003}{2}+1\right)+\left(\frac{2002}{3}+1\right)+..+\left(\frac{1}{2004}+1\right)+\frac{2005}{2005}\)

\(A=\frac{2005}{2}+\frac{2005}{3}+..+\frac{2005}{2004}+\frac{2005}{2005}\)

\(A=2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2004}+\frac{1}{2005}\right)\)

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2005}\right)}=\frac{1}{2005}\)

vậy P=1/2005

4 tháng 2 2016

cái này zới cái trên để mai tính giờ ngủ

18 tháng 4 2016

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow1-\frac{1}{100}=\frac{99}{100}\)

Vậy B = \(\frac{99}{100}\)

19 tháng 4 2016

\(A=-\frac{1}{20}+-\frac{1}{30}+...+-\frac{1}{90}\)

   \(=-\frac{1}{4.5}+-\frac{1}{5.6}+...+-\frac{1}{9.10}\)

   \(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{5}\right)+\left(-\frac{1}{5}\right)-\left(-\frac{1}{6}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)

   \(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{10}\right)=-\frac{3}{20}\)

Vậy \(A=-\frac{3}{20}\)

 

4 tháng 4 2016

\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)

\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)

\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)

\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)

\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)

\(S=\frac{9}{12}\)

\(S=\frac{3}{4}\)

4 tháng 4 2016

S=\(\frac{3}{4}\)